

© 2-IMMERSE Consortium 2018 Page 1 (of 69)

Directorate General for Communications Networks, Content and Technology

Innovation Action

ICT-687655

D2.6 - Distributed Media Application Platform:
Public Software Release

  

Due date of deliverable: 31 October 2018

Actual submission date: December 2018

Start date of project: 1 December 2015 Duration: 36 months

Lead contractor for this deliverable: BBC

Version: 23 October 2018

Confidentiality status: Public

D2.6 - Distributed Media Application: Public Software Release

Page 2 (of 69) © 2-IMMERSE Consortium 2018

Abstract

This document first describes the public software release of the 2-IMMERSE Platform for the
Development of Distributed Media Applications, Multi-Screen Experience Components and
Production Tools. With these open-sourced software components, the community should be able to
deploy their own 2Immerse platform and run similar distributed media applications.

This document further describes a reference architecture, called DMApp-RA, for distributed media
application platforms. This abstract architecture is derived from our 2Immerse platform, and reflect
the knowledge and insight obtained through our own platform-building experience in this domain.
The reference architecture is shaped by our original platform architecture, the platform design and
implementation choices, the chosen set of experiences, which represent a wide range of domains,
and the technology and feature choices made implementing those experiences. The project parties
believe this abstract architecture specification will be a useful guide for the community to generate
architectural blueprints for their own Distributed Media Application platform, and defines a useful
nomenclature for the domain at large.

Target audience

This is a public deliverable and could be read by anyone with an interest in the details of the
platform, service prototypes and production tools being developed by the 2-IMMERSE project. As
this is inherently technical in nature, we assume the audience is technically literate with a good grasp
of television and Internet technologies in particular.

Disclaimer

This document contains material, which is the copyright of certain 2-IMMERSE consortium parties,
and may not be reproduced or copied without permission. All 2-IMMERSE consortium parties have
agreed to full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

Neither the 2-IMMERSE consortium as a whole, nor a certain party of the 2-IMMERSE consortium
warrant that the information contained in this document is capable of use, or that use of the
information is free from risk and accept no liability for loss or damage suffered by any person using
this information.

This document does not represent the opinion of the European Community, and the European
Community is not responsible for any use that might be made of its content.

Impressum

Full project title: 2-IMMERSE

Title of the workpackage: WP2 Distributed Media Application Platform

Document title: D2.6 Distributed Media Application Platform: Public Software Release

Editors: Rajiv Ramdhany (BBC) and Mark Lomas (BBC)

Workpackage Leader: James Walker, Cisco

Technical Project Leader: Mark Lomas, BBC

Project Co-ordinator: Matthew Scarth, BBC

This project is co-funded by the European Union through the Horizon 2020 programme.

© 2-IMMERSE Consortium 2018 Page 3 (of 69)

Executive Summary
2-Immerse is an open-source platform for the production, delivery and orchestration of distributed
media applications. It is the first live end-to-end object-based broadcasting pipeline for synchronized
multiscreen experiences, runs on any infrastructure, and follows industry best practices for scalability
and resilience. It is a joint research effort between Cisco, BBC, BT, CWI, IRT, ChyronHego and
Illuminations Media, and is partially funded by the EU "Horizon 2020" program.

The 2-Immerse platform provides a set of services, authoring tools and real-time production tools as
a complete end-2-end suite that allows developers and users to build and control a multiscreen
distributed experience temporally, spatially, and qualitatively. It also provides video synchronization
services as well as discovery to determine what devices are participating in the experience.

A distributed media application is an experience that runs simultaneously on multiple devices such as
TVs, termed "communal" devices, or tablets and phones, termed "personal" devices. As there are a
multitude of devices with various capabilities, it's hard for developers to tailor their application to
each type of device. 2-Immerse aims to makes this effort much easier by adopting the emerging
concept of object-based broadcasting as defined by the HbbTV 2.0 standard. This approach allows
developers to define their experiences as a set of objects with given requirements and constraints
such as required device capabilities e.g. touch, sound, orientation etc., as well as screen layout
definitions such as multiple/single instance(s), relative/absolute location, etc. This allows a layout
engine to easily customize and adapt the experience. For example, we break down a football match
broadcast into various objects such as the channel bug, score bar, the various video streams, tickers,
etc., and can adapt the display to the current device orientation dynamically.

A subset of the final release software platform & components will be open-sourced with the Apache
2.0 so that external third parties can take advantage of the project’s innovations to develop novel
multi-screen experiences of their own.

This document describes a generalised platform architecture, called DMApp-RA, that may serve as a
reference architecture for those wishing to build similar platforms.

The reference architecture was shaped by our original architecture, the platform design and
implementation choices, the chosen set of experiences, which represent a wide range of domains,
and the technology and feature choices made implementing those experiences.

D2.6 - Distributed Media Application: Public Software Release

Page 4 (of 69) © 2-IMMERSE Consortium 2018

List of Authors
Mark Lomas – BBC

Rajiv Ramdhany – BBC (Editor)

Contributors
Ian Kegel – BT

Jonathan Rennison - BT

Tal Maoz – Cisco

Aviva Vaknin - Cisco

Jack Jansen – CWI

Reviewers
Tal Maoz – Cisco

Aviva Vaknin - Cisco

Michael Probst - IRT

© 2-IMMERSE Consortium 2018 Page 5 (of 69)

Table of contents

Executive Summary .. 3

List of Authors .. 4

Contributors ... 4

Reviewers .. 4

Table of contents ... 5

Glossary of terms ... 7

1 Introduction.. 8

2 Public Software Release .. 10

2.1 Introduction ... 10

2.2 Open Source Software Description ... 10

3 A Reference Architecture for DMApp Platforms ... 14

3.1 The need for a Common Ground for the DMApp Concept ... 14

3.2 Reference Architecture for the Emergent DMApp Domain (DMApp-RA) 15

3.3 DMApp-RA Elicitation Methodology ... 16

3.4 DMApp-RA Domain Model .. 20

3.5 The DMApp-RA Functional Model ... 25

3.6 The DMApp-RA Functional View ... 29

3.7 The Architecture View ... 49

4 Conclusion .. 58

5 References .. 59

6 Appendix A – IBC 2018 Flyer .. 63

7 Appendix B – Functional View Building Process .. 65

8 Appendix C – Intermediate Results of the DMApp-RA Elicitation Methodology 67

8.1 Functional Model... 67

8.2 First Iteration of the Functional View based on the initial Theatre-At-Home DMApp 67

D2.6 - Distributed Media Application: Public Software Release

Page 6 (of 69) © 2-IMMERSE Consortium 2018

List of Tables and Figures
Table 1 Software repositories to be published. .. 12

Table 2 Desired open source terms ... 13

Table 3: Heterogeneity and variations across various DMApps ... 14

Table 4: Main concepts in Domain Model... 25

Table 5: Functionality Groups after 5 iterations ... 27

Table 6: Interaction styles for inter-FG communication in DMApp-RA .. 51

Table 7: Example implementations of DMApp-RA elements .. 55

Table 8: Functional Groups after first iteration (Theatre-at-Home DMApp) .. 67

Figure 1: DMApp Reference Architecture elicitation methodology .. 17

Figure 2: Single-device single-context live DMapp.. 21

Figure 3: DMApp-RA Functional Model after 5th methodology iteration .. 28

Figure 4: DMApp-RA Functional View (Part A) after 5th iteration (Theatre-At-School DMApp) 30

Figure 5: DMApp-RA Functional View (Part B) after 5th iteration (Theatre-At-School DMApp) 31

Figure 6: DMAppComponent lifecycle states .. 34

Figure 7: DMApp-RA Architecture View .. 53

Figure 8: A possible Microservices Pattern application to the Architecture View 54

Figure 9: Functional View method applied to MANET routing protocols to identify Functionality
Groups and functions (32) ... 66

Figure 10: Functional View of the IoT Reference Architecture (33) .. 66

Figure 11: Functional View after first iteration ... 68

Figure 12: Functional Model after first iteration (Theatre-at-Home DMApp) 69

© 2-IMMERSE Consortium 2018 Page 7 (of 69)

Glossary of terms

Term/acronym Definition/explanation

Experience 2-IMMERSE developed, using its own platform, four innovative service prototypes of multi-screen
entertainment ‘experiences’. Unlike existing services, the content layout and compositions are
orchestrated across a set of available screens using an object based broadcasting approach for
dynamic, efficient, high quality, synchronized content distribution and rendering.

Distributed Media
Application
(DMApp)

2-IMMERSE multi-screen entertainment experiences are composed of many applications
configured to work together to deliver the look and feel of a single application. 2-IMMERSE calls
this collection a Distributed Media Application, or DMApp.

Distributed Media
Application
(DMApp)
Component

In 2-IMMERSE, re-usable components are assembled within a Distributed Media Application
(DMApp) to create coherent multi-screen experiences. DMApp components are typically media
rendering objects created as part of the experience production and/or GUI components that
support user interaction and/or implement application logic.

CI/CD Continuous Integration and Continuous Delivery

Context 2-IMMERSE defines a ‘context’ as one or more connected devices collaborating together to
present a media experience. Each context has a ‘contextID’ unique to its session. Multiple
contexts may be active on a single LAN (e.g. a home network. Devices belonging to the same
context must be able to discover each other using the DIAL protocol. Devices can join or leave a
context at any time.

IPTV - Internet
Protocol television

IPTV is a major concept within the 2-Immerse platform as it allows the delivery of next generation
experience levels using object-based approaches. However, we made sure that our client stack is
compatible with traditional linear broadcast using the HbbTV2.0 standard.

D2.6 - Distributed Media Application: Public Software Release

Page 8 (of 69) © 2-IMMERSE Consortium 2018

1 Introduction

This deliverable report provides a description of the software to be released publicly by the project
to facilitate reuse of these code contributions; it also documents a reference architecture for
distributed media applications obtained from a generalisation of the 2Immerse platform.

The 2-IMMERSE open source software represents three years’ worth of continued incremental
development and embodies the platform functions to run all five diverse multi-screen experiences
created by the 2-IMMERSE consortium. It is offered to the community to accelerate further research
and development and to enable SMEs, developers and other institutions in the media industry to
build new multi-screen experiences quickly, especially for HbbTV2.0 devices, to run at scale. The
open-source code provides experimenters with the capability to instantiate their own 2Immerse
Distributed Media Application, hereafter DMApp, platforms and deploy similar DMApp-types. The
platform was developed with capabilities that address particular use-cases in performing arts at
home, live football, football in a social setting, motor track racing and theatre/drama teaching in
schools. But because the development process was incremental and the set of use-cases diverse, it
can be reused to build and run DMApps in other application domains. Some of the design choices
and technology selection may not be an exact fit to other uses; however, the platform is in itself
highly modular and it can be seen as a useful collection of reusable parts.

Describing which functions these reusable parts embody and how they fit into a system of systems is
one of motivations behind eliciting a reference architecture. The DMApp Reference Architecture
provides a more abstract template of an architecture for platforms that enable multi-device media-
object orchestration. The abstract architecture is general enough to be free from implementation
choices but provides a description in sufficient detail of platform functions to allow platform
developers to i) understand the functionality required to orchestrate such experiences and ii) make
their own technology/algorithm selections for these functions as per their own application-domain
requirements. Further, the Distributed Media Application field is an emergent domain that over the
last five years has seen a proliferation of frameworks such as MPEG MORE (4), specifications such as
W3C Presentation API (5) and DVB-CSS (6), prototypes such as Vostok-K (7), Cisco’s F resco (8)
project, domain-specific languages including SMIL 3.0 (9) and BBC’s Object-Based Toolkit (10) and
more recently platforms such as the European project MediaScape (11) and 2Immerse (12) for
orchestrated media multi-device experiences. Some of the prototypes can be viewed as specialised
solutions for dedicated business opportunities without implementing generally applicable concepts
whilst the range of applicability for the specifications may be limited.

To contend with this heterogeneity in DMApp solutions, we believe in the necessity of a common
“lingua franca” i.e. a common understanding of the functions required, for the quick and pervasive
development of innovative DMApp solutions in diverse application domains. Our reference
architecture (called DMApp-RA) establishes this common ground by identifying a minimal set of
unifying concepts, abstractions and their inter-relationships for DMApps. The reference architecture
elicitation definition process described in this document follows a rigorous approach where the
generalised architecture is shaped by successively analysing functions from representative platforms
and generalising them. The methodology prescribes multiple iterations until a saturation point is
reached. The reference architecture development process is exhaustive, and, in this document, it has
been limited to the set of 2Immerse platform instances. The future maturation of the DMApp-RA is
intended to be released separately as a useful specification and guide for the community. In essence,
the DMApp-RA provides a good template for instantiating concrete DMApp system architectures in a
particular application domain, leaving the implementation choices and arising compromises to the
RA-adopters.

As a consequence of our generalisation process, the 2Immerse platform can be seen as an
instantiation of the DMApp-RA and the public software code repositories are reference or sample

© 2-IMMERSE Consortium 2018 Page 9 (of 69)

implementations of the DMApp-RA functions. The general description of these functions and the
discussion of implementation alternatives included therein provides a useful guide to how these
released software components fit into the overall platform.

The rest of this deliverable is structured as follows:

 Section 2: Public software release – this section described the software component
released, the location of the code repositories and the terms under which they have been
made public. It also identifies the software component community manager; the
organisation responsible for the software component beyond the completion of the project.

 Section 3: Reference Architecture for 2Immerse - this section first explains the methodology
used to derive a reference architecture. It then describes the application of the methodology
to the DMApp domain by documenting the iterative analysis of 2Immerse platform
instances. It presents the artifacts generated from the first and last iterations. Lastly, it
presents an abstract system architecture view resulting from the analysis.

 Section 4: Conclusion – this section provides a summary of our contributions in this report
and our recommendations for future work.

D2.6 - Distributed Media Application: Public Software Release

Page 10 (of 69) © 2-IMMERSE Consortium 2018

2 Public Software Release

2.1 Introduction

At IBC 2018, the members of the 2-IMMERSE consortium publicly announced that the object-based
broadcasting platform it had developed, funded by the Horizon 2020 Framework Programme of the
European Union, would be released as open source:

“2-IMMERSE is an EU co-funded innovation project which has developed and is
launching a new open-source platform for Object Based Multiscreen
Entertainment. The open-source platform is based on reusable components that
will accelerate the development of new immersive multi-screen experiences,
encourage the take-up of the HbbTV 2 specification and contribute towards its
evolution.”

(See section Error! Reference source not found. in Appendix for IBC Flyer)

One of the key reasons for publishing the 2-IMMERSE software under and open source licence is to
ensure that the software we use today will be available and continue to be improved and supported
in the future. We are providing the 2-IMMERSE software to the community as a starting point for
further investigation into multi-device experiences. It is a sample implementation of the 2-IMMERSE
multi-screen service reference architecture and may or may not be leveraged directly as-is by third
parties. The individual component repositories can be seen as sample-implementations of the
functions that a particular DMApp platform would need.

This section documents the open source software release by providing full details of the published
software.

2.2 Open Source Software Description

2.2.1 What have we published?

The 2-Immerse core platform is comprised of 23 software repositories, including orchestration
services, a client library and its dependencies. A further selection of supplementary repositories
providing cloud-based media synchronisation and production tools are included, together with
repositories containing documentation, tutorials, sample code and scripts for deploying instances of
the platform.

All 2-Immerse software modules make use of publicly-available dependencies using the usual
mechanism for the programming language in which they are written e.g. NPM for JavaScript, PyPI for
Python, etc. The dependencies and their recursive dependencies are not included in the repositories
themselves and are not themselves included in any open-sourcing process, however the license
levels have been validated to have permissive open source licenses themselves.

The software repositories are listed in the table below together with the organisation nominated as
community manager.

© 2-IMMERSE Consortium 2018 Page 11 (of 69)

Repository Description Community
Manager

Contributors

client-api Client device framework BT BT, BBC, IRT, CWI

timeline-service Service to orchestrate timing and
events

CWI CWI, BT, CISCO,
BBC

layout-service Service to orchestrate layout of
content over a set of display
devices in a multi-screen
experience.

CISCO CISCO

synckit A JS library API to enable
synchronisation of media as
directed by a Synchronisation
Service (a client-api dependency)

BBC BT, BBC, IRT

hbbtv-lib A library of modules for common
HbbTV functionality

IRT IRT, CH

websocket-service Service to support service-
>service, service->client, and
client-> client push
communications

CISCO CISCO, BT, CWI,
BBC

dvbcsstv-lib The JS library for the dvbcss
browser proxy (client-api
dependency)

BBC BBC, BT, IRT

2-immerse Documentation, tutorials, quick
start guide, hosting instructions.

BBC CISCO

auth-service Authentication service CISCO CISCO, BT

auth-admin Admin interface for the auth-
service

CISCO CISCO, BT

bandwidth-
orchestration

Component Bandwidth
Orchestration Service.

CISCO CISCO

logging-service A lightweight service which
flattens a JSON structure sent via
HTTP POST and pushes it to
stdout, where it is collected and
sent to Logstash and the rest of
the ELK stack.

CISCO CISCO, BT

wallclock-service A lightweight time (WallClock)
synchronisation service for frame-
accurate synchronised
experiences.

BBC BBC, CISCO,IRT

shared-state-service This is a fork of the MediaScape
shared state service, licensed
under the Apache License, Version
2.0.

 CISCO, BT

D2.6 - Distributed Media Application: Public Software Release

Page 12 (of 69) © 2-IMMERSE Consortium 2018

shared-state-client Client code from the Mediascape
SharedState repository organised
as a npm package.

BT BT, BBC

oipf-object-polyfill Polyfill to implement the
oipfObjectFactory and allow
implementations of objects to be
created.

BBC BBC

cloud-sync Media Synchronisation Service
and JS client library. Service
comprises of a set of
microservices. A demo-app
hosting microservice is also
provided.

BBC IRT, BBC

2immerse-editor Platform for creating 2IMMERSE
presentations in the browser

CWI CWI, BT

renderer Realtime multi-device layout
visualisation tool for the layout
service

CISCO CISCO

bandwidth-
orchestration-client

Client for the bandwidth
orchestration service. This client
contains the SANDPlayer module
that manages a Dash.JS player and
send statistics to the BOS.

CISCO CISCO

android-unified-
launcher

Cordova applications to wrap
unified-launcher web application
as a native app for Android.

BBC BBC, BT

system-images HbbTV2.0 emulator firmware for
the Intel NUC

BBC BBC

launcher Multi-experience launcher web
application for TVs and
companions scoping user
enrolment, device discovery,
device association, multi-device
authentication, session discovery
and session creation.

BBC BBC, BT

Table 1 Software repositories to be published.

2.2.2 What have we not published?

 Media content or software repositories related to the 2-IMMERSE service trials (MotoGP at
Home, Football at Home, Football FanZone, Theatre in School or Theatre at Home) due to
content rights limitations.

 Rancher/AWS infrastructure components used to host 2-IMMERSE specific platform
deployments, although alternatives templates are provided to enable adopters to host test
instances of the 2-IMMERSE software platform on their choice of infrastructure.

© 2-IMMERSE Consortium 2018 Page 13 (of 69)

2.2.3 Where is the software published?

All software has been published to GitHub under the 2-IMMERSE organisation1 as publicly visible
repositories.

2.2.4 Who will be maintaining and managing the software?

The nominated community managers are responsible for supporting their repositories, helping to set
their future direction of development and gating any contributions. Community managers for a given
repository have generally been nominated based on whomever first contributed to the repository
and created it. That said, if another consortium partner has become the majority contributor or
effective maintainer, then they have been nominated as the community manager.

2.2.5 Licence Type

All 2-IMMERSE software is published under the Apache Licence v2.0 that was used for the 2-
IMMERSE dvbcss-clocks and dvbcss-protocols software repositories, published earlier in the project.
Apache Licence v2.0 was chosen because it is permissive. It’s summarised as:

“A permissive license whose main conditions require preservation of copyright and
license notices. Contributors provide an express grant of patent rights. Licensed
works, modifications, and larger works may be distributed under different terms
and without source code.”

Apache Licence 2.0 is officially recognised by both the Open Source Initiative (OSI)2 and the Free
Software Foundation (FSF)3 and is widely used. Apache Licence v2.0 was selected based on satisfying
the desired terms below:

Is the licence recognised as a common Free and
Open Source licences?

Yes

Who is permitted to examine the human-
readable source code of the software?

Anyone

Who has permission to run the software? Anyone

Who is permitted to adapt or modify the source
code of the software?

All licencees

Who is permitted to redistribute the modified or
unmodified source code of the software?

All licencees

Does the licence permit sub-licensing of rights? Yes, Unconditionally

Table 2 Desired open source terms

2.2.6 When will it be available?

The software will be available publicly on GitHub end of January 2019.

1 https://github.com/2-IMMERSE

2 https://opensource.org/

3 https://www.fsf.org/

https://github.com/2-IMMERSE
https://opensource.org/
https://www.fsf.org/

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 14 (of 69) © 2-IMMERSE Consortium 2018

3 A Reference Architecture for DMApp Platforms

The 2-Immerse platform was designed to support a wide variety of functionality and domains as
demonstrated in the experiences, and their success validates the architecture. For this reason, the
platform (through its incremental convolutions) is an excellent candidate for deriving a reference
architecture for future distributed media application platforms. Reference architecture formulation
requires the analysis of more than one platform. We followed an iterative methodology for deriving
the reference architecture from 2Immerse platform instances but for further maturation of the
reference architecture, we plan to extend our analysis to more DMApp systems and frameworks and
disseminate the results to the community as a public document or publication (as part of the project
results dissemination activity). A mature reference architecture is a useful guide for the community
in understanding and building this type of systems. In this section, we provide the reference
architecture derivation methodology and present its results.

3.1 The need for a Common Ground for the DMApp Concept

‘Distributed Media Applications’ is an umbrella term for interconnected technologies, devices,
objects and services utilised in the provision of multi-device object-based media experiences for
audiences. After many years of research and discussion, there is still no clear and common definition
of the concept. The concept of DMApp emerged primarily from the convergence of different
technological developments and fields. It builds on the emergence of innovative enabling
functionalities that stem from object-based media, adaptive media streaming, web-application
environments on hybrid televisions, standardised companion-screen discovery and media-
synchronisation functions in HbbTV 2.0, as well as from the availability of mobile and IoT devices that
can be co-opted into experiences. Although this is still an emergent domain, the last five years has
seen an accelerated growth in the development of systems frameworks, specifications, prototypes,
domain-specific languages and more recently platforms such as 2Immerse for orchestrated media
multi-device experiences. This heterogeneity can be exemplified by considering a few DMApp
experiences, including the ones in the 2Immerse project, developed for different application
domains.

Table 3: Heterogeneity and variations across various DMApps

A quick analysis of the 2Immerse DMApps reveals several dimensions of variability, as shown in Table
3. The analysis of the use cases also reveal a good distribution in terms of variations in the DMApp
concept.

Based on the diverse nature of DMApps and the resulting heterogeneity in DMApp platforms, we
suggest that a common “lingua franca” for the DMApp domain, much like the thin-waist of the
Internet protocol suite, is needed as a focal point for quick and pervasive development of innovative

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 15 (of 69)

solutions that can leverage different technologies developed for different application domains. Based
on our experience of building diverse DMApps within the 2Immerse projects, specifically performing
arts broadcasting, performing arts teaching, football, and motor track racing, we believe the
consortium is well-positioned to lay the foundation for the much-needed common ground or a
common DMApp platform architecture.

3.2 Reference Architecture for the Emergent DMApp Domain
(DMApp-RA)

The identification of a Reference Architecture for the DMApp domain (hereafter, termed DMApp-RA)
provides this common ground. By reference architecture, we refer to an abstract framework that
comprises a minimal set of unifying concepts, abstractions and relationships for understanding
significant relationships between the entities of an environment. Reference architectures are
particularly useful in rich emergent domains as they provide a template solution for an architecture
of a platform for a set of application domains. In particular, they identify core functions, structures
and their respective elements, and the interaction between these elements. At this level of
abstraction, they are independent of specific standards, technologies, implementations, or other
concrete details. Thus, they provide a good template for instantiating concrete architectures in a
particular application domain, leaving implementation choices and the arising compromises to the
RA-adopters.

“According to RUP (Rational Unified Process), a Reference Architecture: …is, in essence, a
predefined architectural pattern, or set of patterns, possible partially or completely
instantiated, designed, and proven for use in particular business and technical contexts,
together with supporting artefacts to enable their use. Often, these artefacts are harvested
from previous projects.” (13)

The 2Immerse platform instances were developed and refined to solve the need of our use-cases in a
general way so that the platform was reusable from one use-case to another; by extension, the
platform may be applicable to other use-cases in the distributed multi-media application space. The
caveat is that the platform was built and refined to fulfil specific sets of requirements and may reflect
some design decisions, implementation compromises and technology choices that support those
specific features for our experiences. Thus the 2Immerse platform is a good starting point for
deriving a reference architecture and can be considered as one of its possible concrete instantiations.
Businesses who want to create their own compliant DMApp systems would benefit from a Reference
Architecture that describes the essential building blocks as well as design choices to deal with
conflicting requirements regarding functionality, performance, deployment and security. Interfaces
should be standardised, best practices in terms of functionality and information usage need to be
provided.

Our goal, therefore, is to first derive a reference architecture from the 2Immerse platform used to
develop and deploy 5 specific instantiations of the 2Immerse platform:

1) 2Immerse Theatre-at-Home
2) 2Immerse MotoGP
3) 2Immerse Live Football
4) 2Immerse Football Fanzone
5) 2Immerse Theatre-at-school

The DMApp Reference Architecture allows us to describe abstractly the 2-Immerse platform free of
functional-duplication, technical debt and other design compromises that have naturally arisen as a
result of resource constraints and time pressure.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 16 (of 69) © 2-IMMERSE Consortium 2018

In this document, we provide a taxonomy of concepts in the domain and build a lexicon of
terminology that are crucial to establishing a common understanding of DMApp platforms across
different application domains. The individual functions associated to the main concepts4 are
identified. A significant number of these functions are available as self-contained decoupled libraries,
frameworks and packages in our implementation.

We have taken into account and integrated some concepts and standards from MPEG MORE and
MediaScape in our platform design. An outcome of this is that generalisations of the architecture to
accommodate variations in concepts and terminology will not result in drastic changes to the
Reference Architecture. Concepts such as ‘Source’, ‘Sink’ and ‘Node’ are used in MPEG-MORE to
broaden the scope of what can be orchestrated using DVB-CSS timing. In DMApp-RA, we make use of
similar terms to refer to these particular concepts.

3.3 DMApp-RA Elicitation Methodology

We have chosen a reference architecture derivation approach that is concerned with identifying core
domain functions and the variabilities of these functions across exemplar platforms. Due to the
heterogeneity exhibited in our five DMApp implementations, we are confident that the 2Immerse
DMApps provide a sound basis for the shaping of our platform and thus the reference architecture.
This will reduce the number of iterations required in our methodology to identify all possible
variations in DMApp-platform functionality.

The reference architecture elicitation approach is based on deriving four models/views of the
platform based on an analysis of exemplar systems:

i) the Domain Model
ii) the Functional Model
iii) the Functional & Non-Functional View
iv) the System Architecture View

The purpose of the views is briefly summarised in the following sub-sections. The different views
focus on different aspects of the platform thereby contributing individually to the quality of the
reference architecture; they are complementary and enable the reference architecture extractor to
fix key abstractions used in the architecture that cover all four views. This is a simplified derivation of
the different sub-models in the Reference Architecture; other models could include: Information
Model, Communication Model, Trust-Security-Privacy.

The elicitation process and relationships between the different views are illustrated in Figure 1.

4 The reference architecture should be free from specific implementation choices, such as Redis,
MongoDB or Polymer. These choices are already documented in our concrete “implementation
architecture” and should only be referred to as examples when it helps to clarify aspects of the
reference architecture.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 17 (of 69)

Figure 1: DMApp Reference Architecture elicitation methodology

3.3.1 The Domain Model

The Domain Model is a description of main abstract concepts belonging to a particular area of
interest. The domain model also defines basic attributes of these concepts, such as name and
identifier, as well as relationships between concepts. By including a definition for each identified
concept, the domain model provides a common lexicon and taxonomy of the Distributed Media
Application DMApp concepts.

The first step in the methodology involves examining the DMApp system to identify its main
concepts, and the associations and relationships between these concepts (e.g. is-a, has-a, has-many,
uses). Successive passes through this step in future iterations may require a generalisation or
redefinition of some of the concepts.

3.3.2 The Functional Model – coarse functional decomposition

In deriving the functional model and view of DMApp-RA, functional decomposition is used as a
method to break up the complexity of 2Immerse and other representative platforms in the DMApp
domain, into smaller and more manageable parts, and to understand and illustrate their inter-
relationships.

The output of the functional decomposition process produces functional descriptions at two levels of
abstraction:

• The Functional Model

• The Functional View

The Functional Model is an abstract framework for understanding the main concepts in the platform
for running DMApps, and the interactions between these groups. The model exists at a coarse-level
of abstraction in that it identifies the main functionality groups, most of which are grounded in key

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 18 (of 69) © 2-IMMERSE Consortium 2018

concepts of the DMApp Domain Model. The main concepts identified in the previous step are
imported into this phase of the process and mapped onto existing Functionality Groups or converted
into new ones if no overlap exists with current Functionality Groups (hereafter, FGs).

The purpose of the Functional View and the method to build it is described in the next section.

3.3.3 The Functional View – fine functional decomposition

The Functional View describes a finer level of abstraction, the system’s functional components,
including the component’s responsibilities, their default functions, variations in their functions and
primary interactions. The Functional View is developed by starting with the Functional Model and
expanding the Functional Groups described therein. In succeeding iterations, the following sequence
of steps is used to enrich and generalise the Functional View:

1. Identify functions associated with new concepts in the new platform, generalise them and group
them into Functionality Groups

2. Determine if functionality bundled together with other functions belong to the same group or
can be partitioned into another group

3. Identify commonalities and variabilities in the functions.
4. Capture the way the functionality is accessed by or itself invokes other functions.

3.3.4 The Non-Functional View

The Non-Functional View is concerned with aspects such as performance, resource usage, ease-of-
use and extensibility.

This perspective of the reference architecture encourages platform-designers to explicitly propose
abstractions and mechanisms for the provision of the non-functional behaviour.

In this way, the platform designers avoid the pitfall of fixing key non-functional aspects of the
framework to default sub-standard solutions, which could constitute immutable decisions in the
design of their platform. Wherever the non-functional behaviour depends on the platform
deployment environment and different strategies can be applied to yield particular benefits to the
platform user or hosted services, we can make the non-functional behaviour a variability in the
architecture.

In the Non-Functional View, we consider aspects of the platform that influence non-functional
properties. For each non-functional property, we decide on whether some additional platform
functions are needed and how these functions are added to the Functional View.

3.3.4.1 Scalability
Upon examining platform throughput, we can add to our reference model the capability to handle
1000+ requests by using some pattern to do horizontal scaling. We can achieve concurrency through
multiple processes by using a deployment pattern such as a service instance per container so that it
is straightforward to scale up and down a service by changing the number of container instances.

The container encapsulates the details of the technology used to build the service. All services are,
for example, started and stopped in exactly the same way.

3.3.4.2 Ease of use: server-side and client-side service discovery
Platform services have to able to call each other and invoke functionality via APIs. It is implausible to
expect services to run at specific locations, e.g. hosts and ports, especially if a microservice pattern is
enforced throughout the platform architecture. Consequently, platform builders must implement a
mechanism that enables the clients of a service to make requests to a dynamically changing set of
ephemeral service instances.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 19 (of 69)

The pattern we can use in this case is server-side discovery (14). When making a request to a service,
the client makes a request via a service router (e.g. a load balancer) that runs at a well-known
location. The router queries a service registry and forwards the request to an available service
instance.

3.3.4.3 Cross-Cutting Concerns
There are a number of functions that are related more to the ease of getting platform services up
and running and monitoring the health of these services.

Examples of these cross-cutting concerns include:

 Externalised configuration - includes credentials, and network locations of external services such
as databases and message brokers

 Logging - configuration of a logging framework such as log4j or logback

 Health checks - a URL that a monitoring service can “ping” to determine the health of the
application

 Metrics - measurements that provide insight into what the application is doing and how it is
performing

 Distributed tracing - instrument services with code that assigns each external request a unique
identifier that is passed between services.

 Timeliness/responsiveness of system

 Elasticity (cf. Reactive Manifesto)

 Security considerations

 Degree of automation

 Life cycle concerns

Cross-cutting concerns may result in additional services/functions added to our functional view.

3.3.5 The Architecture View

The DMApp-RA Architecture View focuses on the structural aspects of the platform, as well as the
interactions that take place within the system. It describes how the general functions defined in the
functional view are organised into architectural abstractions and how these functions are accessed.

The procedure to generate the Architecture View is summarised as follows:

1. Organize the functions from the Functional View into architectural abstractions.
Design decisions that have been made in the exemplar platform services due to performance
consideration, e.g. IPC vs. RPC, are not reflected in the Architecture View, while design patterns that
provide clear benefits are adopted in the architecture.

High cohesion and loose coupling are desirable traits in Architecture View of the reference model,
thus RA-builders strive to maintain a strong separation of concerns to ensure the platform services
are independent. Decoupled functionality is more easily replaced by alternative solutions to fit the
specific design constraints of the target platform.

2. Determine how the functions will interact and how the functions will be accessed by other
components.

Possible function interaction implementation options include synchronous invocations,
asynchronous request-reply, asynchronous events and unicast/multicast messages. Performance and
flexibility are factors in this decision and achieved with patterns such as RMI, pub-sub, and shared-
state. Some interaction patterns, such as group communication, can be fixed in our reference
architecture if they provide very clear benefits, such as promoting loose coupling between services.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 20 (of 69) © 2-IMMERSE Consortium 2018

For example, asynchronous pub-sub communication patterns make it easier to integrate
unanticipated functions and their variations.

The interaction mechanism chosen may cause side effects such as the inability to maintain strong
consistency guarantees at all times in the system. The mechanism may be chosen to be utilized
regardless if these side-effects are short-lived and/or do not impact overall functionality.

Another aspect of the Architecture View is the specification of interfaces and protocols required to
invoke the functions. Languages such as RAML, IDL, and Google Protocol Buffers are useful for
specifying interface/protocol.

3.4 DMApp-RA Domain Model

The main purpose of a domain model is to generate a common understanding of the target domain
in question. With a common notion of the main concepts is it possible to argue about architectural
solutions and to evaluate them. This domain model extraction therefore fixes the nomenclature of
the domain by providing a taxonomy of concepts, and includes a definition of the main abstract
concepts, their responsibilities, and their relationships. This section describes the abstract concepts
relevant for DMApps and selects the key concepts to feature in the architecture.

3.4.1 DMApp Domain Model Concepts

3.4.1.1 DMApp Concept

A DMApp is the actual user experience. Variations of the DMApp concept include:

1) Live DMApps
2) On-demand or offline DMApps
3) Single-sender single-context single-device DMApp
4) Multi-sender single-context single-device DMApp
5) Single-sender single-context multi-device DMApp (master stream, no master stream)
6) Multi-sender single-context multi-device DMApp (master stream, no master stream)
7) Single sender multi-context multi-device DMApp (master stream, no master stream)
8) Multi-sender multi-context multi-device DMApp (master stream, no master stream)
9) Single-sender single-context multi-device dynamic-user-driven DMApp

A DMApp description specifies a set of DMAppComponents that will be flexibly presented on
particular devices fulfilling prescribed roles based on state changes in the DMApp (e.g. DMApp
chapters, progress of time, devices joining/leaving, etc.). It comprises of the following

 A description of DeviceRoles and DMAppComponents associated with them

 The list of devices in the Context (logical grouping of devices) fulfilling particular DeviceRoles

 A LayoutDocument specifying the presentation parameters of DMAppComponents such as
device capabilites, minimum and maximum size, positioning anchors, priority level, target
regions, volume-level, etc for participating Devices in the Context.

 A TimelineDocument that specifies the expected lifecycle and presentation state of the
DMAppComponents on devices in response to DMApp state changes including DMApp
chapter definition, DMApp current time, DMAppComponent loaded, ready, and end of
presentation states.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 21 (of 69)

 DMAppComponent state items to be reported and acted upon e.g. current time/speed
changes and component status changes.

Figure 2: Single-device single-context live DMapp

3.4.1.2 DMAppComponent Concept

A DMAppComponent is a UI component or reusable widget that can be deployed, loaded and its
playback controlled by a DMAppRuntime on a Device.

A DMAppComponent is a generalisation of the MediaDataSink, TimedDataSink, DataSink and
MediaDataSource concepts.

A DMAppComponent has component ID, component class, component URL config parameters and
state such as LifeCycleStatus which takes on the values { initialized, started, finished, currentTime }

3.4.1.3 Device-Role Concept

A DeviceRole defines the role the device takes on in an experience, the DMAppComponents
displayed on each device specifies constraints per role. Roles include communal, personal,
primary/secondary, and additionally may be defined as required or optional. 5

A DeviceRole is fulfilled by a Device based on its Capabilities (see Section 3.4.1.4). Sample device
roles include:

 Main screen role taken by a communal TV with largest screen-size, left-speaker role taken by
secondary communal device, and right-speaker role taken by another secondary communal
device

 Teacher companion or student companion device roles fulfilled by tablets

 Pub-landlord’s control device role fulfilled by his smartphone

A DMApp needs all ‘required’ DeviceRoles to be fulfilled for it to run.

5 The sets of DMAppComponents for DeviceRoles in a DMApp are not mutually exclusive; a DMAppComponent
can be deployable on two devices even if each device fulfills a different role. E.g. a stats DMAppComponent can
be shown on a companion screen preferentially (higher priority), but allowed to be moved to a main screen if
more screen space is needed later. Or, the stats DMappComponent can be shown on both main and
companion screens (equal priority).

S1

Communal Device D1

S2

S3

Sources Delivery Networks incl. CDNsStreams N Consumption Devices

S
1

S2

t1

t3

t5

t0

t2

t4

Context

S3

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 22 (of 69) © 2-IMMERSE Consortium 2018

3.4.1.4 Device Concept

A Device is a generalisation of one of the following device type:

1. communal, for example, TVs, large screens, surround speakers,
2. personal, for instance tablets, phones, smartwatches, and wearables or
3. shared-personal, such as pass-around tablets and phones.

A Device has several capabilities associated with it that must be defined in the 2Immerse context;
examples of capabilities include screen size and resolution, number of video and audio channels,
touch interaction, etc. Devices are discoverable by other context devices through a chosen discovery
mechanism such as DIAL, mDNS or Bonjour, on the local network.

Each Device has a status associated with it that indicates if it has been paired with a user account or
on-boarded into a DMApp. Status can include one or more of the following:

 unpaired

 paired - a device that has been initialised with an access token and paired with a user account
and may access the 2Immerse platform services

 onboarded

 not-onboarded

 …
A Device has a SyncMode to specify its synchronisation-mode in the Context. The SyncMode can be
one of the following: {Master, Slave, None}. A master device provides timing to slave devices for
synchronisation. A None SyncMode implies equal synchronisation status among the devices; the
synchronisation timing is either achieved by reconciling the timing from all devices or by an external
entity injecting timing into the DMApp.

3.4.1.5 User Concept

One or more Devices are paired to a User account.

A User launches a DMApp from a Personal Device and then on-boards Communal devices into the
DMApp. Alternatively, the starting device can be a Communal Device.

A user interacts with DMAppComponents on devices with interaction capabilities, usually personal
devices.

3.4.1.6 Context Concept

Starting the DMApp on a required device establishes a context, which can then be shared with other
onboarded devices.

A context is a group of devices in a physical environment participating in a multiscreen experience.

3.4.1.7 Layout Concept

A Layout defines the presentation characteristics of DMAppComponents on the set of participating
Devices in the Context.

A Layout is computed for a dynamically-varying set of DMAppComponents over a set of diverse
devices; it specifies the physical placement of the active DMAppComponents on the context’s
devices.

Regions are logical rectangular display areas, which are mapped onto underlying physical devices by
the calling application; each region may be mapped onto a single device.

Each DMApp defines a set of constraints per component type that must be honoured in the layout.
Constraints may specify minimum & maximum size, priority level, video/audio capabilities, etc., and
may target specific regions. Constraints are specified for both communal and personal device types

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 23 (of 69)

The LayoutDocument is a layout description (e.g. in JSON format) which contains the constraint set
and is part of the DMApp description.

3.4.1.8 Layout Orchestrator Concept

A Layout Orchestrator computes the layout for a dynamically-varying set of DMAppComponents
over a set of diverse devices and determines the best distribution, positioning and sizing of the
DMAppComponents over the set of context devices, per the constraints, and returns a list of
components with per device, with region, position and size. The orchestrator manages the context
devices, stored in a backend database.

The Layout Orchestrator manages the set of devices in a given context along with the running
components and provides the computation engine with full context and component constraint
specifications for each layout computation 6.

The layout is generated by request or triggered by changes to the DMApp context, such as the
arrival of a new device.

3.4.1.9 Timeline Concept

A DMApp has a timeline that models the expected lifecycle and presentation state of the
DMAppComponents on devices in response to DMApp state changes such as DMApp current time,
DMAppComponent-loaded, ready and end-of-presentation events. A timeline can be fixed or
editable. The TimelineDocument is a specification of the timeline model and is part of the DMApp
description.

3.4.1.10 Timeline Orchestrator Concept

A Timeline Orchestrator is responsible for executing the Timeline model of a DMApp as it is
presented over a set of participating devices in a context. It uses authored timeline metadata,
current DMApp time, DMApp state, such as the status of DMappComponents and optionally live
triggers, to determine which DMAppComponents should be loaded for presentation as the timeline
of the experience progresses. It also specifies a source of timing to the DMAppComponents for their
playback and synchronisation.

TimelineEvents are triggers emitted (usually by the clients) that can cause different branches in the
experience storyline to be taken.

TimelineEdits are modifications to the timeline document, provided by an external agent such as an
Editor, that change the current experience.

A Timeline Editor is an external agent can dynamically issue live-edits to a DMApp’s Timeline.

3.4.1.11 DMAppRuntime Concept

A DMAppRuntime, referred to in 2Immerse platforms as Client-API, is a runtime running on each
device, that initialises/starts and coordinates the DMApp on that device based on its DeviceRole. It is
responsible for executing the presentation state of the DMApp on that device, i.e., acting upon
requests to (un)load/start/stop DMAppComponents, and for reporting state changes.

 It enables DMAppComponents to be loaded from internal and external sources, if necessary,
by acting upon requests from the LayoutOrchestrator and the TimelineOrchestrator or by
listening to specific DMApp state updates.

6 In 2Immerse, the layout computation engine is stateless and computes a full layout for a given set
of parameters. The layout service is stateful and maintains the context state in an underlying data
store.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 24 (of 69) © 2-IMMERSE Consortium 2018

 It schedules the playback of DMAppComponents and provides a source of timing via the
Timeline Clock, to drive their presentation.

 It monitors active DMAppComponents and reports their state or LifeCycle status,
presentation status and current time position, to interested parties such as the Timeline
Orchestrator and the Media Synchroniser.

 It enables communal devices to be discoverable and to advertise context/DMApp
information to other devices for joining the DMApp. Personal devices via their
DMAppRuntime can discover communal devices, launch the DMAppRuntime on these and
instruct them to join a DMApp and its context.

 It performs local positioning of DMAppComponents and reports layout information and
updates to the LayoutOrchestrator.

 It listens for DMAppState changes and disseminates them to other DMAppRuntimes, the
Timeline Orchestrator, the Layout Orchestrator and other entities via available channels
(such as HbbTV app-2-app, and shared-state).

 It allows DMAppComponents to be remotely accessed by another DMAppComponent using
RPC.

3.4.1.12 DMAppState Concept

A DMApp has state, termed DMAppState, which may be shared and updated by distributed
DMAppRuntimes, services or DMAppComponents.

DMAppState can have multiple scopes such as global (inter-context), context-local, device-local, and
user-defined. DMAppRuntimes, services and DMAppComponents can subscribe to different
DMAppState scopes.

3.4.1.13 Bandwidth and Bandwidth Orchestrator Concepts

A DMAppComponent that consumes and renders a media stream uses media and/or audio
bandwidth resources on the network that is a finite resource

 A DMAppComponent therefore reports BandwidthUsage (if supported by underlying media
frameworks) and applies BandwidthConstraints determined by a Bandwidth-Orchestrator to stay
within the prescribed bounds.

A Bandwidth Orchestrator collects BandwidthUsage from clients (DMAppComponents/
DMAppRuntimes) and allocates Bandwidth to running clients according to their defined QoS
priorities (called priorityLevels).

3.4.1.14 Timeline Clock concept

A DMAppComponent controls its own internal playback media-timeline with respect to a supplied
timing source or clock. This timing source, termed Synchronisation Timeline, is indicated by the
Timeline Orchestrator and provided to the DMAppRuntime by the DMApp’s MediaSynchroniser.

A Timeline-Clock is a linear scale against which the passage of time can be measured; it represents
the temporal dimension of experiences and timed data playback. A Timeline-Clock is modelled using
a clock abstraction, so that a timeline can be represented locally by a software clock object.

The relationship between the DMAppComponent’s component timeline and a Synchronisation
Timeline is expressed by a CorrelationTimestamp.

A CorrelationTimestamp models the temporal relationship between two timelines, and is a pair of
two values each of which represents a time value on a timeline such that the two time values
correspond to the same moment in time on the parent and child timelines. A CorrelationTimestamp

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 25 (of 69)

also provides start and end times; these define a bounded time period on the parent timeline during
which the relationship expressed by the CorrelationTimestamp is valid.

A Timeline Shadow is a local estimate of a timeline from another device or destination against a
reference time source, termed the WallClock. The estimate is refreshed when it receives new
CorrelationTimestamps. A Timeline Shadow can be manifested locally through a software
abstraction such as a clock object.

3.4.1.15 WallClock concept

A WallClock is a global reference time source against which media/data stream units can be
timestamped at capture-time, in production or at presentation-time in a DMApp’s master device.
DMAppRuntimes obtain a local estimate of the WallClock and thus share a common sense of time.
The WallClock is used as a base timeline for creating CorrelationTimestamps.

3.4.1.16 Synchronisaton Timeline and Media Synchroniser concepts

A Synchronisation Timeline is an abstract timeline used by all DMAppRuntimes to synchronise local
media playback, if the relationship between the synchronisation timeline and the media timeline is
known. The synchronisation timeline may be provided by a master DMAppComponent or generated
from the timings of all devices or injected by the Timeline Orchestrator.

A MediaSynchroniser provides timing across the set of participating devices for the purpose of
synchronising DMAppComponents playbacks. It allows one or more Synchronisation Timelines to be
distributed to each device and a TimelineShadow clock object for use by the DMAppRuntime to
synchronise DMAppComponents.

3.4.2 Main Abstractions

The concepts identified in the domain model provide the key abstractions (Functionality Groups) for
the Functional Model:

 DMApp Context

 User Device

 DeviceRole Communication (

 Layout LayoutOrchestrator

 DMAppState Timeline

 DMAppRuntime DMAppComponent

 TimelineOrchestrator TimelineEventEmitter

 Bandwidth BandwidthOrchestrator

 MediaSynchroniser SynchronisationTimeline

 WallClock MediaDataSource

 MetaDataSource TimedDataSource

 DataSource ContentStore

Table 4: Main concepts in Domain Model

3.5 The DMApp-RA Functional Model

Next we evaluate the domain concepts in terms of the functions they encompass. We attempt to
map them into existing Functionality Groups (FG) or create new ones, where the mapping is not
possible. Where there is an overlap in functionality, we generalise the concepts and merge them
into a new Functionality Group while ensure each FG is fairly self-contained and encompasses one

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 26 (of 69) © 2-IMMERSE Consortium 2018

category of functions. After five iterations through the methodology (each evaluating a 2Immerse
DMApp deployment), a generalised set of functionality groups was obtained. For the sake of brevity,
only the results of the final iteration are presented in this section. Table 5 lists the final set of
Functionality Groups, whereas the intermediate results of the Functional Model are presented in
Appendix C (See section 8.1).

Functional Group Description of Coarse Function

DMApp Distributed Media Application – not technically a platform functionality group but
may include user-defined functions, e.g., user score aggregation in a distributed
quiz DMApp

DMApp Store A repository of live or on-demand DMApps. Queried by DMApp launchers on
devices to obtain current list of relevant DMApps

Media Source A media capture device or source for a media stream

Media Sink A DMAppComponent which consumes timed media data, e.g., audio/video
streams, or untimed data, e.g., images, text, tweets.

Data Sink A DMAppComponent which consumes non-audio-visual data

Timed Data Sink A DMAppComponent which consumes non-audio-visual data but which has timing
relationships between the data units

Device A communal or personal display device

Device Role A DMApp specific role for each device

Communication Protocol stacks, messaging infrastructure, HTTP-based interaction schemes such
as Web Services and REST, etc.

Layout Document A set of constraints used to determines how/if DMAppComponents should be
displayed on a device fulfilling a role

Layout Orchestration Generates a component layout for a set of device, regions, layout constraints and
active DMAppComponents, defining the size and positions of the components on
the participating devices. The DMAppRuntime uses this layout to present
DMAppComponents onto a set of rectangular areas representing graphic display
regions in each screen

DMApp Timeline A specification of the expected lifecycle and presentation state of the
DMAppComponents on devices in response to DMApp state changes

Timeline
Orchestration

Concerned with manipulating and controlling the execution model of a DMApp
instance, i.e., unravelling the storyline of the experience with the passage of time
or selecting a particular branch upon receiving events

Bandwidth
Orchestration

Monitoring and managing the bandwidth consumed by streaming media
(principally DASH video) components in a running DMApp to optimise the quality
of experience

Timing and Media
Synchronisation

Provides an accurate notion of timing to other components to enable starting
DMApp components at the correct time and maintain/preserve intra-media timing
to allow receivers to recreate the sender’s/encoder’s timing for correct playback.
Also provide inter-device and inter-destination media synchronisation to respect
inter-media temporal relationships set at DMApp creation time or decided during
live production

State Management Ensures that all devices and services have a consistent view of the distributed
shared state as it changes dynamically. Declarative model for specified and
dynamic binding of functionality to these variables. State variable change
signalling

DMAppRuntime Initialises, starts and coordinates the DMApp on a device based on its DeviceRole.
Responsible for executing the presentation state of the DMApp on that device,
acting upon requests to (un)load/start/stop DMAppComponents, and for
reporting state changes.

Launching &
Onboarding

Functions related to user enrolment to the DMApp platform, pairing of devices to
user accounts, launching of DMApps on the host device and discovering other

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 27 (of 69)

devices to onboard in the running DMApp on the local network

Security Access control to platform functions, content stores. Authorisation of requests as
per user permissions, encryption/decryption (DRM) of media streams

Management Functions related to the configuration and management of the DMApp as well as
the platform

Content Store A secure data store to serve client applications, DMAppComponents and their
assets, timeline and layout documents, and data/media streams.

Timeline Editor Timeline editing to change the storyline by inserting at run time timeline snippets
and their activation signals or event names. Live insertion of new timeline
branches. Event triggering to activate pre-defined and templated sequence of
timeline processes.

Data Playback Capturing, packaging and efficiently distributing non-audio and non-video time
sensitive data

Media Processor Audio/video encoding and transcoding, multiplexing of streams into transport
stream packaging units and injecting timestamps/sequence numbers to allow
correct playback rate at the receiver and synchronised presentation of
multiplexed streams.

Data Processor Data stream creation and timestamping using global reference clock.

Table 5: Functionality Groups after 5 iterations

In addition to identifying and grouping common functions, it is necessary to specify how these
functions are invoked. Figure 3 depicts an abstract arrangement of the Functionality Groups that
makes the interactions and dependencies between them explicit. In the reference architecture
derivation phase, interface specifications will reify these interactions.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 28 (of 69) © 2-IMMERSE Consortium 2018

Figure 3: DMApp-RA Functional Model after 5th methodology iteration

Timeline

Orchestration

T
im

e
lin

e

D
M

A
p

p

L
a

u
n

c
h
 &

 O
n

-b
o

a
rd

in
g

Device [Device Role]

Communication

S
e

c
u

ri
ty

T
im

in
g

 &

S
y
n

c
h

ro
n

is
a

ti
o
n

L
a
y
o
u

t

D
M

A
p
p

 S
ta

te
 M

a
n

a
g

e
m

e
n
t

M
a

n
a

g
e

m
e

n
t

DMApp

HbbTV 2.0

B
a

n
d

w
id

th

ORCHESTRATION

D
M

A
p

p
 R

u
n

ti
m

e

Metadata

Source

Audio

Source

Timed

Data

Source

Video

Source
DMApp

Timeline

Document

DMApp

Authoring/

Editing

CAPTURE

Data

Source

Layout

Orchestration

DMApp

Layout

Document

Content Store DMApp Store

S
e

c
u

ri
ty

DMApp Production

D
M

A
p

p

L
a
u

n
c
h

M
e
d

ia
/D

a
ta

P
ro

c
e

s
s
o

r

DMAppC
DMAppC

DMAppC

D
a
ta

P
ro

c
e
s
s
o

r

DMApp Consumption

DMApp
DMApp

DMApp

Layout

Media

Sink
Data Sink

Media

Source
Timed

Data Sink

Event

Triggering

Timeline Events

Communication

Timeline Edits

Timeline,
Layout, Timing

Timeline,
Layout,
Timing

Content, metadata

D
a

ta
 P

la
y
b

a
c
k

Timing

Content, metadata

Timing

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 29 (of 69)

3.6 The DMApp-RA Functional View

The Functional View is developed by first identifying self-contained units of finer-grain functionality
obtained in our functional decomposition of candidate platforms. Each function is analysed to
determine the FG to which it belongs; functions are moved to FGs to maintain a strong separation of
concerns that may require the creation of new FGs. Each function is evaluated to determine whether
it is a variation of an existing function extracted in the previous iteration or whether it is entirely
new. In the former case, the existing function is generalised and its variation in functionality noted. It
is possible to group together function-variants in sub-function groups.

Successive iterations produce a more generalised functional model and view. The iterations are
terminated when the methodology reaches a saturation point, i.e., the functional decomposition of
new DMApp platforms does not result in the identification of significantly new core functions.

3.6.1 Functional View for DMApp Production and Consumption

The first iteration of functional decomposition was based on the Functional Model derived from the
Theatre-At-Home DMApp. It was, as expected, the most effort-intensive part of the process as it
involves identifying the core functions. Since incremental addition of new functionality was made to
the 2Immmerse platform to suit the use case requirements and application domain, our successive
refinements of the Functional View also reflects the addition of new functions. The Functional View
obtained after the functional decomposition of the Theatre-at-Home DMApp platform is provided in
Appendix C.

In the fifth iteration, the Theatre-At-School DMApp (the final DMApp developed), whilst being in the
same application domain as the first DMApp (performing arts), exhibits some markedly different
variations in functionality:

 The timeline is completely user-driven: for example, the teacher decides on duration of each
sub-lesson, sets activities for students on their tablets.

 It has looser and more complex coordination/control semantics: for example the teacher
hands control to groups of students at given times in the lesson.

 Timing and sync-accuracy requirements are strict but shorter-lived: videos put up by the
teacher on the main screen needs to be synchronised with student-tablets and the teacher’s
own tablet.

 User state, such as students’ deliberations and observations, is created on-the-fly, and
shared with and presented promptly on other devices with low-delay.

Additional functions identified from the functional decomposition of this DMApp are assessed to
determine the FG they belong to and whether new FGs need to be created. The Functional View that
results from this last iteration is presented in Figure 4 and Figure 5. Figure 4, shows the
decomposition of functions related to DMApp orchestration and consumption. Figure 5, on the other
hand, shows the functions required during DMApp live and non-live production.

After the five iterations, the Functional View is augmented with functions related to fulfilling Non-
Functional Requirements. These are shown as red boxes in the FGs in Figure 4 and Figure 5.

A description of the Functionality Groups and their incumbent functions is deferred to the next
section (See Section 3.6.2).

For the interested reader, the intermediate Functional View after the analysis of the Theatre-At-
School DMApp is presented in Appendix C.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 30 (of 69) © 2-IMMERSE Consortium 2018

Figure 4: DMApp-RA Functional View (Part A) after 5th iteration (Theatre-At-School DMApp)

Management DMApp

Launch & On-boarding

Device

Communication

AAA Timing & Media

Synchronisation
Distributed State Mgt

DMApp

Consumption

Sync timeline signalling.

Node discovery
& rendez-vous

Bi-directional
Data Channel

Web RTC
Real-time Data

Channel

State Signal
Pub-Sub

ICE-
candidate
exchange

Node identity

Event Queue

Topics, lobbies,

scopes

Long-poll &

WebSocket conn.

Clustering

Persistence of
msgs

Logging

User identity mgt

User role mgt

User auth.

Access Token
and Scope mgt

App auth.

Scope
enforcement

Device-account
pairing

Arbitrary payloads
e.g. client-launch

config

Persistence of
user data

Clustering

API GW +
Cache

DoS Prevention

Arbitrary payloads
e.g. client-launch config

Experience launch
config

DMApp Data
synchronisation

Client
connection state

notification

Device
capabilities

Channels
for {user, app, group}

combinations

Transactional

state updates

Consistency

guarantees e.g.

Paxos

State change
notification

Clustering State
Persistence

Long-poll &

WebSocket

conn.

Logging,
incl. User-

interaction

events

WebRTC
session
setup

WebRTC RTP

NAT traversal
P2P

connections
across WAN

Data Relay/
TURN Servers

WebRTC
signalling

DIAL Service
advert.

on local subnet

mDNS
Service
advert.

Bonjour
Service
advert.

Node
presence

across LANs

HbbTV App
launch/stop

Auxiliary data
payload

Service
Registry/
Discovery

Service Mgt
&

orchestration

Service
health
checks

TIme synchronisation

WallClock

Multi-transport
UDP, WS, WebRTC,QUIC

Master node election
Multiple strategies

Load
balancing

Config
update

User
Enrolment

Session
Discovery

Capability
Discovery

Session/
Context
Creation

Device-
Role

Association

Multi-device
authentication

Acquire access

tokens

Cross-
platform
support

Device
comm. API

DMApp Runtime

DMApp init
& setup

DMApp C.
interface &
base impl.

Clock
creation &

sync

DMAppC
Status Update

DMApp
Component

Logging

TimelineEvent
actuator/
sender

Layout
update

actuator/
requestor

Clock update
publisher

Local layout
mgt

DMApp data
forwarding
Inter-device

app2app, data

endpoints, to/via

layout service

Media
playback
control

DMApp
Component

RPC

Host platform
abstraction

Fault
monitoring &
diagnostics

Sync timeline local clock

Log message
creation

Msg schemas

Reference time
source

Log message
aggregation

Log data queries
& visualisation

Log data storage

GDPR data
sanitiser

Data
encryption

Unicast broadcast

DMApp
DMApp

Media

Sink

DMApp

Data

Sink

DMApp

Media

Source

REST

DMApp EPG

Device
Discovery

on local subnet

Log
analysis.

dashboard

State scoping,
namespaces,

...

Interactive

Web

Components

...

Timeline Layout Bandwidth

ORCHESTRATION

Context Mgt
Devices, constraints, components

Layout
Notification

Layout Controller

DMAppC state change
requests/transactions

Clustering

State
Persistence Logging

DMApp
Component

Lifecycle Mgt
Init, start, stop,

destroy commands

DMApp Comp. Status Update
Actuation

Sync timeline
selection &

coordination

Timeline Controller
Interpretation & Execution Engine

TimelineEvent actuation
dmappC lifecycle cmds

Timeline
navigation

/repositioning

DMApp Comp. Status
Update Fwd to Editor

Logging
Context
isolation

Bandwidth Usage
Collection

MPEG SAND messages

Bandwidth Allocation
Policies

Client priority levels

Allocation Dissemination
ABR instructions

DMApp Bandwidth
Controller

Orchestration engine

Clustering

State
Persistence

Logging

Bandwidth Model

Bandwidth
Orchestration

Trigger

Layout Model, DSL
Logical regions, overlays,

device layout adaptations,

layout constraints

Timeline Model, DSL
Sequence, concurrent and loop

abstractions

Active
DMAppC
Reconfig.

Device
bootstrap

app

Distributed
data binding

DMApp
Storage

DMAppDMAppDMApp
DMAppCDMAppCDMAppC

DMAppC
Storage

DMApp EPG

Data/Media
Storage

Signals

WebSocket

RPC via shared
state signalling

TCP/IP

HbbTV
App-2-app comms.Service

Discovery

Middleware

Client input
documents

Audio/Video Data
Timeline Document
Layout Document

LAN-local
state

signalling

Inter-device Media
sync.

DVB-CSS

State Signal
declaration

Temporal alignment of
media objects in

production

Inter-destination Media
sync.

Cloud-Sync

Adaptive Media Playback
Sync Controllers

QUICUDP Bluetooth 802.15.4

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 31 (of 69)

Figure 5: DMApp-RA Functional View (Part B) after 5th iteration (Theatre-At-School DMApp)

Communications

Layout Orchestration

Timed

Data

Source

CAPTURE

Data

Source

DMApp

Storage

AAA

Middleware

DMApp Production

DMApp

Creation/Launch

Data

Processor

Metadata

Source

Audio

Source

Video

Source
cameras

Media

Processor

DMApp
DMApp

DMApp

TRACAB TRACAB

Processor

...

Clean

video

feeds

Media Encoders

Timing

Reference Clock

HD-SDI

DASH Encoder

Timeline Injection

PLAYOUT

H264 Encoding

Timeline Gen.

Media Converters

API Gateway

Trigger UI

DMAppC
DMAppC

DMAppC

DMAppC

Storage

Persistence of
user data

Clustering

DoS Prevention

DASH/HLS

DATA

DATA

Timeline Orchestration

Data Playback

REST

Timing

Reference Clock

Data Pusher

Message
Queues
AWS IoT

DATA

DATA

Data Query
Handler

Clustering

State
Persistence

Logging

Timeline Editor

DMApp Authoring
& Validation

Timeline document

Layout document

Dmapp_main.css

Client input document

2IMMERSE CDN

Data/Media

Storage

Timeline Event
Templates

Timeline Edit
Preview

Timeline Events

Client-API Channels
DMAppController

Timeline

document

Layout

document

DMApp

Components

Wall Clock

Timeline Controller
Interpretation & Execution

Engine

Timeline edit actuation
dmappC lifecycle cmds

Component Status Update
Fwd to Editor

DMAppCStatus

D
M

A
p

p
C

S
ta

tu
s

Timeline

Edits

Timing

Wall Clock

Correlation

Timestamps

Live Trigger
Tool

DMApp Timeline State

Timeline Model
Sequence, concurrent and loop

abstractions

Data Segmenter

Data Adapter
Data Adapters

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 32 (of 69) © 2-IMMERSE Consortium 2018

3.6.2 DMApp-RA Functional View Components

3.6.2.1 Device
This concept abstracts over the heterogeneous devices that are targeted for DMApp playback. It includes
communal devices such as TVs, large screens, home speakers, personal devices such as tablets, phones,
smartwatches, wearables) and shared-personal, such as pass-around tablets/phones.

These devices provide host-application environments for running the DMAppRuntime.

To ensure portability and consistency of DMApp component presentation across devices, it is desirable for
the host application environment to support open web standards (HTML5, CSS and JavaScript) and wherever
possible hardware-accelerated audio/video decoding. For communal devices such as hybrid televisions, a
host application environment that implements the HbbTV 2.0 profile is preferred. The HbbTV 2.0 standard-
compliance ensures that TV devices provide a mandatory set of functionalities to the DMApp via
standardised JavaScript APIs. Personal devices are also able to interact with communal devices across
interfaces defined for Companion-Screen communication in the HbbTV 2.0 standard.

On other communal device types, emulation of part of the HbbTV2.0 technology stack can be used to ensure
consistent interaction interfaces with personal devices. For example, a standard device discovery
mechanism that is guaranteed to work across different implementations.

In addition to particular application environments and APIs available therein, devices may have other
capabilities that are relevant to the DMApp e.g. screen size, resolution, speaker, touch-screen, camera,
microphone, other sensors such as accelerometer, gyroscope, ambient light sensor, etc.

3.6.2.2 HbbTV Stack (merged into Middleware, Media Sync, Launching & Onboarding)

HbbTV is an open-standard for hybrid digital televisions and an industry standard for the delivery of
interactive entertainment services to consumers on connected TVs, set-top boxes and multiscreen devices,
from broadcast and broadband sources. Interactive services take the form of HTML and Javascript running in
a browser engine and can co-exist with the presentation of broadcast content. HbbTV defines a profile of
HTML, CSS and Javascript capabilities for TVs to support, and also defines APIs to control functionality
specific to TV devices (such as controlling the broadcast tuner).

HbbTV 2.0 adds a range of functionality to support interaction between the TV and a companion device:

 Companions discovering the TV on the home network.

 Companions launching an HbbTV app on the TV.

 TV launching an app on the companion.

 Bi-directional app-to-app communication between HbbTV app and companion app.

 Media synchronisation:
o HbbTV apps knowing the current timeline position of TV content.
o HbbTV apps supplementing broadcast with a replacement for the audio or video, synchronised

to the broadcast but streamed via IP, with frame accuracy
o Companions knowing what the TV is showing and synchronising to it with frame accurac

The HbbTV2.0 FG in the Functional View refers to the two implementations of the HbbTV2.0 software stack
depending on the device role: the master screen or the companion screen.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 33 (of 69)

3.6.2.3 DMApp Component
DMAppComponents are entities that encapsulate functionality and user interface elements in
discrete entities which are individually specified and controllable by the Layout and Timeline
Orchestration FGs. DMAppComponent can be downloaded, dynamically loaded, linked with the
application, and its operation controlled by an application runtime. The need to be able to instantiate
DMAppComponents on heterogeneous devices along with maintaining consistency in look and
behaviour, makes WebComponents a natural choice for implementing these components.

WebComponents is a web standard for encapsulating HTML and the associated CSS style and
JavaScript logic into a single HTML tag. This encapsulation and declarative usage style ensure that
components can be easily used without requiring the host page to be aware of its internal
implementation. JavaScript APIs enable these components and their associated behaviour to be
defined as custom elements included in HTML pages. The JavaScript APIs allows a “shadow” DOM
tree to be attached to the custom element, rendered and controlled separately from the main
document DOM. From our experience of implementing DMAppComponents, we recommend that
WebComponents be used as the basis for all DMAppComponents implementations. The implication
is that some aspects of DMAppRuntime functionality need to be implemented in browser
environments, such as Chromium and WebKit, to allow it to perform functions such as DOM-tree
manipulation, attaching listeners to DOM element properties, etc. and functionality implemented
natively be accessible via Javascript APIs using frameworks such as Cordova and Web Assembly.

A DMAppComponent is therefore a JavaScript object7 that implements a defined and documented
interface. The DMAppComponent interface includes control of the component’s life-cycle, visibility,
position, and related functionality, and provides references to utility interfaces for handling of clocks
and time-based cueing, component parameters and shared state.

A common implementation pattern is for the host component to include a default implementation of
all the required parts of the DMAppComponent interface, so that DMAppComponent authors only
need to implement the parts which are relevant for their components, overriding the default
behaviour where necessary.

For orchestration purposes, it is useful for DMAppComponents to have a set of pre-defined lifecycle
states such as the ones shown in Figure 6.

7 It is also possible to build DMAppComponents using native UI frameworks such as Qt, Google’s Flutter
SDK,iOS SDK, Android SDK. It is easier for DMAppComponent control and inpection, if the DMAppRuntime is
implemented in the same environment or in a language that can be cross-compiled to different application
target environments.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 34 (of 69) © 2-IMMERSE Consortium 2018

Figure 6: DMAppComponent lifecycle states

3.6.2.4 Communication

 This FG encompasses protocol stacks including the transport, network and link-layer protocols (TCP,
UDP, QUIC, and IEEE 805.15.4 low-power packet radio MAC), network abstractions, addressing
issues, network management and device-specific communication stacks such as Bluetooth, IR or IEEE
805.15.4 for IoT Devices.

3.6.2.5 Middleware

The Middleware FG abstracts over the variety of interaction schemes built on top of the
communication stacks running on DMApp devices and service platforms. It provides a number of
interfaces/abstractions to the FG above for

 sending/receiving data including unicast, broadcast and full-duplex channels via WebSockets,

 invoking functions via RPC mechanisms (e.g. Web Services, REST gRPC, Apache Thrift, XML RPC),

 distributing information via communication paradigms such as pub-sub (message brokers), tuple-
spaces, distributed shared memory, etc. Pub-sub message brokers can be used to build a
distributed state management system that supports named scopes and binding of state signals to
client code.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 35 (of 69)

3.6.2.6 Timeline Orchestration
The Timeline Orchestration FG functions are concerned with manipulating and controlling the
execution of a DMApp instance, i.e., unravelling the storyline of the experience with the passage of
time or selecting execution paths upon receiving events, or moving along the experience timeline to
another position (rewind/forward). The functions in this FG follow an MVC pattern, where a timeline
document provides a starting execution model for the DMApp. The model is updated at the DMApp
progresses with state such as current WallClock time, DMAppComponent clock time,
DMAppComponent status, and user-interaction events. A controller acts on changes made to the
model to update the DMApp View – the presentation of DMApp Components on devices.

Timeline Model

There are various strategies to modelling storylines for object-based multi-device experiences and
orchestrating storylines. Notable approaches include the following:

 Modelling the storyline as a linear experience timeline that is driven by a real-world clock
and defining the storyline branches and DMApp component presentation as timelines
correlated to the main timeline by correlation timestamps. The main timeline could be
provided by timing signalled in a broadcast video stream for example.

 Modelling the storyline as a Mealy-type Finite State Machine and defining inputs or DMApp
state variables as a set of events, signals or parameters that are emitted or updated as the
DMApp progresses, e.g., DMApp components start or complete their presentation, a device
joins the context, or a user interacts with the DMApp. These would trigger DMApp state
transitions. The state machine is itself time-invariant and DMApp progress can only be
measured via state transitions.

The 2Immerse approach for timeline modelling is closer to the second strategy as an event-based
storyline model with timing inference from other sources, was deemed to be more suitable for the
heterogeneous requirements stemming from the various use cases. These requirements included the
non-deterministic duration of some content as in football matches, or the user-interaction-driven
experiences as in the Theatre-at-School use case.

The linear experience timeline model is insensitive to delays and makes the expression of non-
deterministic presentation timing difficult. It requires that all timing relationships between media
objects are pre-calculated. Whilst the main advantage of this timeline model is that it is an easy-to-
understand representation of continuous media objects under deterministic timing conditions, it
cannot handle situations where the duration of a media object changes over the lifetime of the
presentation. A timeline model based on the explicit media timings alone may not be rich enough to
model the various structured paths throughout a DMApp presentation.

Timeline Document Language

A Timeline Document specifies in string format the timeline of the DMApp. It contains the set of
execution steps and rules for the DMApp; these are used to prime the Timeline Model and are then
evaluated as events are produced during the DMApp. The timeline document language is a DSL
(domain-specific language) that allows the specification of a timeline document and has the
necessary constructs to enable the expression of diverse DMApp execution semantics, constraints
and inter-media object temporal relationships.

Several hypermedia languages, such as Nested Context Language (NCL) (15) and Synchronized
Multimedia Integration Language (SMIL) (16), allow for defining causal and constraint relationships
between media objects.

The 2Immerse implementation of the Timeline Orchestration concept adopts a SMIL-like structured
timing model (2) which provides timing facilities for when media objects are scheduled, and once
activated, their lifespan. The model provides nested presentation structural elements for the

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 36 (of 69) © 2-IMMERSE Consortium 2018

composition of media objects and a timing scoping mechanism where the timing of a media object
can be inferred from its timing scope (by the context in which a media object is presented in relation
to other objects) or its parent at presentation time. From SMIL, it also borrows structuring and timing
mechanisms to model parallel and sequential composition (cf. time-graph), conditional composition,
transitions and more complex behaviour such as user-interaction. For example, it provides elements
and attributes to describe non-deterministic timing of media objects e.g. timing as a result of using
interactive or event-based presentation. This feature, in particular, allows the Timeline Orchestration
concept to listen to lifecycle events of DMApp component instances and to Timeline Events, and
actuate particular storyline branches.

Timeline Controller

The Timeline Controller is responsible for

1) updating that model based on DMApp state changes e.g. lifecycle status changes of DMApp
components, such as a video media object finished playing, or a clock driving a segment of the
DMApp storyline reaching the end-time

2) comparing the changed model with the current DMApp presentation state
3) determining the changes required to the presentation state (e.g. DMApp components to be

stopped/destroyed, new DMApp components to be initialised, initialised DMApp components to
be started)

4) scheduling the presentation of DMApp components, allowing for delays such as component-
loading, media download, media-processing pipeline-priming, component-unload, etc. whilst still
maintaining the authored temporal relationships defined in the timeline document

5) requesting the Layout Orchestration concept to actuate DMApp component load-unload
commands

6) providing a timing source (a clock source) to the individual DMApp components to slave their
presentation to it

Media Synchronisation Timeline Coordination

This function provides master role designation and timing sources (clocks or timelines signaled in
stream, correlation mappings) as synchronisation timelines to DMAppRuntimes. The
DMAppRuntimes can then provide this timing information to the media synchronisation functions to
achieve inter-device and inter-destination synchronization.

3.6.2.7 Layout Orchestration
The Layout Orchestration FG relates to functionality of a DMApp View Controller. It manages and
coordinates access to the presentation surface of the DMApp and it validates/actuates on commands
to present DMApp components on that surface based on each device presentation characteristics
and constraints. The DMApp View or presentation surface is comprised of the output surfaces of a
set of devices. In a multi-screen experience, the DMApp View is all the screens of the participating
devices and represents the layout for DMApp components8.

Given a set of media objects / DMApp Components, authored layout requirements, user preferences,
and the set of participating devices and their capabilities, the Layout Orchestration FG will determine
a best attempt for an optimal layout of components for that configuration. The functions include the
following:

 Context Management: define the set of devices, constraints and components that comprise a
context.

8 The presentation surface also includes other output modes such as audio, olfactory media.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 37 (of 69)

 Layout Computation: given a set of devices/regions, constraints and components, the layout FG
will generate a layout defining the size and positions of the components on the layouts. The
layout engine attempts to maximize the number of components laid out with minimum internal
holes while adhering to the constraint set. The layout is generated by request or triggered by
context updates.

 Layout Notification: each time a new layout is generated, notifications are sent to the affected
devices

 Bandwidth Orchestration Interaction: if requested, the layout FG notifies the Bandwidth
Orchestration FG when relevant events occur that affect bandwidth usage, e.g. video component
start/finish.

3.6.2.8 Bandwidth Orchestration
In a DMApp running on the home network, if access to network bandwidth is unbridled and
uncoordinated, a race condition is likely to develop as multiple video components end up competing
for bandwidth (typically video chat (WebRTC) and DASH video streams). In adaptive video streaming,
a variety of bitrate adaptation algorithms are designed to estimate available bandwidth, and request
the best possible encoding. With concurrent adaptive video streams on multiple devices in the
network, a race condition develops between these parallel algorithms. The on/off requests from
multiple DMAppComponents (or sessions) that compete for bandwidth across a bottleneck link cause
i) instability in the selected encoding, ii) bottleneck-link under-utilisation, and iii) disproportional
shares of available bandwidth. These uncoordinated client-side ABR algorithms result in random
oscillations between different bit rate representations selected in response to fluctuating bandwidth.
This is detrimental to the QoE; instability, for example, appears to the user as images of varying
quality over time. Further, under-utilisation may prevent clients from requesting the best possible
encoding for the user.

This is a domain-wide issue and the MPEG’s Server and Network Assisted DASH (SAND) specification
(17) defines an architecture and interfaces to specifically address QoS and QoE support for DASH-
based services.

The Bandwidth Orchestration FG includes functions aligned with MPEG SAND to monitor and manage
the bandwidth being consumed by streaming media (principally video) components in a running
DMApp and optimise QoE. Similar to the other orchestrators, an MVC pattern is applicable to this FG.

At the time of writing, the effectiveness of Bandwidth Orchestration approach taken via MPEG was
limited. Achieving bandwidth allocation fairness at the application layer without transport-layer
knowledge of flows is difficult. Web browsers do not expose transport-layer performance metrics to
JavaScript to allow adaptive bitrate systems to make accurate available bandwidth estimation and
fairer bit-rate selection decisions and improve the job that MPEG-SAND does.

Further, the nature of DASH segment downloads on diverse devices results in an intermittent pattern
of requests which is not very nice to TCP. TCP has its own flow control mechanism – it will keep
increasing its congestion window size until it detects a packet drop, upon which it will do a back-off
and reduce the window size. The result of this behaviour is that every new HTTP request is launched
with stale TCP state from the previous request. This on/off behaviour prevents TCP from reaching
equilibrium (18). Rather than equal or weighted share of capacity, obtained bitrates appear to be
determined by factors such as the time of arrival relative to other streams, the viewing platform and
implementation, operating system supports, and the content provider. , As reported in this
investigation: “Client-Driven Network-level QoE fairness for Encrypted 'DASH-S” (19), the actual
reality is that the application-layer Bandwidth Orchestration feedback loop (in the 2Immerse
implementation) is working independently with another feedback control loop lower down the
protocol stack (the TCP flow-control mechanism). This application-layer feedback loop uses coarse-
grain knowledge it can gain, e.g. estimating bandwidth from download times.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 38 (of 69) © 2-IMMERSE Consortium 2018

It has been suggested the transport layer is the best layer at which to achieve fairness, as the DASH
application layer doesn’t have enough of a global view to ensure fairness between DASH and other
adaptive bitrate systems, such as the WebRTC video conferencing used in the Theatre-At-Home
service trial. The conclusion is that cross-layer adaptation mechanisms are required i.e. metrics from
both the application layer and the network layer are required to devise a system to improve fairness
of bandwidth utilisation between networked DASH clients.

The functions of the Bandwidth Orchestration FG are independent of the choice of implementation.
The algorithms for the collection of bandwidth usage may use alternative mechanisms than MPEG-
SAND.

Bandwidth Model

The bandwidth model embodies the algorithm or computation model to partition bandwidth and
decide on a bit rate selection for the different DMApp components in a single DMApp.

The model is initialised with the following information:

 Available Bandwidth: optional parameter specifying the available bandwidth for a given
experience. If not supplied, the algorithm attempts to estimate the available bandwidth
from the overall bandwidth usage of the experience.

 Active DMApp components in the Context (LAN) and the available bit rates for the media
streams

 Priority Levels: user defined priority scale used to determine the required QoS of the video
clients.

When talking about multiple playback client with several bitrate choices for each one and a set
priority (QoS) for client, the problem of determining the optimal allocation of bandwidth among the
clients maps directly on the Quadratic Knapsack computation problem (20). In essence, the problem
is to find the correct choice of bit rate representations for active DMApp components such that
higher-priority components will be minimally impacted at the expense of lower-priority components,
and that the total bandwidth required will not exceed a given limit. This problem is NP-Complete and
hard to solve and thus finding the optimal solution is impractical for real-time uses. It is possible to
use tight approximative solutions (21), (22), (23), (24) which are complicated but time-consuming,
though monumentally faster than calculating the optimal solution, as well as greedy algorithms that
are not as tight but can run in real-time to reach a useful solution.

Bandwidth Usage Collection

This function collects bandwidth usage information as well as available bit rate representations for
the video streams from running clients and reports this via MPEG DASH SAND messages.

Bandwidth Controller

The controller is responsible for updating the bandwidth-model based on updates about active
DMApp components, their available bit rates, and on reception of SAND messages from
DMAppComponents (that support SAND reporting). Thereafter, it performs the following functions:

 Bandwidth Allocation: based on the collected data, the controller periodically computes
bandwidth allocation between running clients according to their defined QoS priorities.

 Action Notification: when appropriate, based on the bandwidth allocation computation, the
service sends action notifications to the affected clients with ABR bitrate selection instructions.
In the scenario where there are sustained reported stalls, or observed competition for
bandwidth (i.e. bandwidth oscillations between multiple player components), the FG should send
control messages to the components to prevent such competition (i.e. by having one or more
components switch to a lower rate representation).

 Layout Orchestration FG Interaction

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 39 (of 69)

o It listens to requests from the Layout FG to initialise or stop computations for given
DMApps

o In the scenario where none of the video players can move to a lower rate representation,
the service should work with the Layout FG to determine which of the DMApp
components can be terminated to improve the overall quality or experience for the
remaining players.

 Bandwidth Orchestration State Sharing: Other platform services may benefit from being made
aware when player components are experiencing issues (e.g. stalling), for example the Timeline
FG.

3.6.2.9 Timing and Media Synchronisation

Distributed components and services responsible for the execution of a DMApp need to maintain an
accurate notion of timing to instantiate DMApp components at the correct time and
maintain/preserve the inter-media temporal relationships set at DMApp creation time or during live
production.

Delay and delay variability introduced by delivery processes from source to receiver can result in
unpredictable presentation behaviour.

 At the source-side (including the playout system), sources of delay and delay-variability include
capturing, sampling, encoding, encryption, packetisation, protocol layer processing, and
transmission buffering.

 When the media units are transported over packet-switched networks to the receivers, delay
variability is added due to network jitter resulting in the original temporal relationships between
the media units not being preserved; these need to be reconstructed at the receiving side via
buffering and sync.

 At the receiver side, end-system jitter (CPU load, OS responsiveness), buffering and presentation
delay also introduce variability. Even if the presentation of a media stream on two devices were
to be perfectly time-aligned, imperfections in their clock will cause their clocks to drift and affect
the accuracy of the media stream decoding and rendering processes.

The result of this delay variability is that even in single-device DMApps, end-to-end delay differences
can occur when simultaneously delivering different media components via the same technology to
the same receiver (e.g., an audio and a video stream sent in individual RTP/RTCP streams).

The same effect can be observed in multi-device DMApps when simultaneously delivering the same
media content(s) via the same technologies to different devices, regardless of their location.

If the media objects are captured/sent by different sources and these are not time-aligned, the
asynchrony will be even more pronounced.

These delay differences mean that the media objects need to be time-aligned or synchronised when
they are presented on their host devices. For synchronisation or time-alignment to be achieved on
the consumption devices, the following capabilities may be needed.

Time Synchronisation

All capture, production, orchestration and receiver devices must maintain a coherent notion of time
by keeping their clocks synchronised to a global reference clock. Most types of media object
presentation control assume that the clock ticks at the sources and destinations have the same
advancement and the current local times are also the same, i.e. the use of globally synchronised
clocks make simultaneous presentation-timing control simpler. Time synchronisation schemes such

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 40 (of 69) © 2-IMMERSE Consortium 2018

as NTP, PTP or GPS can be used for adjusting clocks at different devices and maintain a synchronised
WallClock.

Timing Signalling to Media Object Players

For correct media playback at the receiving device, the receiver needs to replicate the media source’s
time system; time and timing information are the tools to facilitate this task. Time indicates the exact
moment when units of the media stream should be displayed and is obtained from the timing
information signalled to the player.
Temporal relationships between media stream units are, for instance, signalled to the receiver
devices by multiplexing timing metadata or timeline (timestamps, sequence numbers, source and
group identifiers, markers, event information to Media Unit) in the streams. This timing information
can be conveyed using in-band timeline signalling, i.e., timestamps, sequence numbers are included
in the Media Unit packets. As an example, MPEG2-TS streams accomplish intra- and inter-media
synchronisation via Transport Stream timelines inserted by the encoder and used by the decoder for
play-out. Timelines and timestamps (time and timing) are inserted within the MPEG2-TS packets.
Using the timeline injected, multiple media streams of a program inside the transport stream, e.g.,
video, audio, and subtitles can be time-aligned for presentation.

Temporal relationships between independent media-streams are signalled out-of-band to receiver
devices using out-of-band schemes such as correlation timestamps or time-bases via SMIL.

Timing information signalling enables the Timeline Orchestrator to determine when to load/unload
media objects (and decoder pipelines primed) and when they are to be started/stopped. For non-live
DMApps, the DMAppRuntime on the master device signals the start time and the timeline-clock used
to Timeline Orchestrator. A master timeline or clock may be preferred by the Timeline Orchestrator
for pacing the playback of timed DMAppComponents. Sharing and maintenance of an accurately
synchronised local estimate of the master timeline can be achieved through the services of media-
synchronisation schemes such as Cloud-Sync, Shared Motion or DVB-CSS.

Media Synchronisation

Media synchronisation methods follow one of two approaches: a distributed method, or a centralised
method to evaluate asynchrony between multiple devices and compute a presentation timing for all.

In the distributed method, each destination transmits information about the output presentation of
media units, e.g. video frames, audio units, at the destination to all the other destinations. Each
device is then responsible to calculate a reference presentation timing according to the received
information from the other destinations by using the same method. All devices should then adjust
their DMAppComponent presentation timing to the reference presentation timing.

In the centralised method, there is a single sync-controller component that gathers the output
presentation timings from all the destinations. The controller determines the reference presentation
timing and multicasts this information to all the destinations. When each destination receives the
information about the reference output timing, it applies a local resynchronisation strategy to adjust
its output timing to the reference output timing.

LAN-local Inter-Device Media Synchronisation

The reference presentation timing computation uses presentation timestamps from all devices and
for the reference presentation timing to be relevant; the computation algorithm needs to be fed the
freshest possible presentation timestamps. Because the accuracy of the presentation timing decays
with time, it is recommended to keep, wherever possible, reference timing computation localised to
the LAN (lower transmission delays for presentation timestamps). Thus, the need for a LAN-local
Inter-Device Media Synchronisation function in DMApps where the context is a LAN.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 41 (of 69)

A suitable choice here is DVB-CSS (25) – a master-slave synchronisation/timing control scheme
designed primarily for the purpose of media synchronisation between a master device, such as a TV,
and companion devices, all residing on the same local-area network. It takes advantage of the low-
latency communications (including the use of low-latency network transport protocols) between the
devices to achieve frame-accurate media synchronisation. One of the benefits of this scheme is its
ubiquity in HbbTV 2.0 televisions. DVB-CSS is the mechanism adopted by HbbTV to achieve media
synchronisation between a television and second-screens. With the widespread adoption of HbbTV
2.0, one can potentially rely on an inter-device media-sync solution being already present in the
living room. DVB-CSS sync and app-control service endpoints are exposed via DIAL which is designed
to work in a local network setup (LAN-broadcast for SSDP messages).

Inter-Destination Media Synchronisation

For DMApps that include more than one destination, an inter-destination media synchronisation
solution (IDMS) can be used to achieve synchronised DMAppComponent presentation among
geographically distributed users. Centralised or distributed variants of timing control schemes can be
used to fulfil the IDMS functions.

In the centralised approach, the synchronisation is controlled by a synchronisation master, the Sync
Controller, which is either the media source or a separate node, but not a peer. The synchronisation
master collects timing information and sends timing instruction to which the peers must adhere.
Examples of solutions that are based on Synchronisation Master Scheme include 2Immerse’s Cloud-
Sync service (20) and MediaScape’s Shared Motion service (26).

Distributed IDMSes are, on the hand, are based on a distributed control scheme. They use distributed
protocols to determine the reference playback timestamp to which the peers may synchronise.
Timing information is exchanged in a P2P manner among the peers. This scheme has the highest
robustness in terms of overall failure probability as the content provider is only required to host the
multimedia content. Nevertheless, the peers have to trust each other as sources of timing
information and must all be time-synchronised. The requirement that devices from different
networks communicate with each other may be problematic if Network Address Translators (NATs)
are used on the device’s host network (especially if the peers are behind symmetric NATs). NAT
punch-through solutions such as STUN servers may be needed in this case. Examples of solutions that
implement a Distributed Control Scheme for IDMSes are (27) and (28).

Local Timing Abstractions

Representation and manipulation of timing through suitable abstractions, for example, software
clock objects to represent media timelines (cf. dvbcss-clocks library).

Local Resynchronisation Strategies

Different strategies can be applied to reduce the asynchrony to imperceptible levels at the devices
such as changing the playback speed or skipping media samples/frames. However, it is likely that
each strategy will have some impact on the user’s QoE (Quality of Experience) and the disruption
may vary across media types and programme genres (29). Therefore, the strategy or combination of
strategies for resynchronising the media player(s) should be selected so as to minimise the impact on
the user’s QoE.

Two possible strategies are:

 Adaptive Media Playback and

 Media-Frame Skipping.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 42 (of 69) © 2-IMMERSE Consortium 2018

The Adaptive Media Playback (AMP) function involves adjusting the media player’s playback speed to
reach the desired media head position after a finite period of time whilst incurring an acceptable
degradation in QoE for the companion screen application user.

It is possible that the asynchrony value measured from the media player is sufficiently large that
unless a radically-large value for playback speed is selected, the media player will take a long time to
become synchronised with the Media Timeline Clock. It is preferable in such a case to use a playback
adaptation strategy that skips forwards or backwards (a seek operation) to reduce the duration of
the disruption. Although skipping is perceptually detrimental to the user experience, it is more
effective to correct severe asynchronies quickly.

When a media player skips to an unbuffered point in the media stream, a further delay is introduced
since the player has to fetch and buffer the required media frames. The MFS strategy therefore has
to estimate the buffering delay 𝑇𝑏𝑢𝑓𝑓𝑒𝑟𝑑𝑒𝑙𝑎𝑦 and preemptively account for it when requesting the

media player to skip media frames. This buffering delay need only be factored in if the new seek
position lies beyond the currently buffered media data.

Temporal alignment of media objects in production/ DMapp creation

The scheduling of starting/ending DMapp components can be made with respect to the DMApp-
crafted timing or with respect to the timing of live events. In either case, time-aligning media streams
simplifies creating temporal relationships between them for synchronised presentation at the
consumer end. This function is made easier if all capture devices are time-synchronised in the first
place.

Assuming all cameras, microphones and sensors are capturing in the same physical environment,
time-alignment of the different sources can be achieved via the captured content, such as a physical
event captured by all the different sensors. If physical objects are not visible to all the cameras, as
when users point mobile phones in different directions, audiotracks cross-correlation can be used to
time-align the video stream (cf. COGNITUS project).

The next step in creating these temporal relationships between the different media sources is to
record cross-stream correlation timings during production and/or DMapp creation. These
correlations can be recorded if the media streams carry timing metadata such as timestamps or
sequence numbers in the form of a timeline. It is a common occurrence in play-out systems to have
timelines signalled in raw media streams, even from the point of capture, as in SDI stream formats.
The challenge is for these timelines to persist after stream transcoding (e.g. encoding to H264 and
MPEG2-TS) and for the recording of cross-stream correlations to still be relevant when the streams
are decoded at the receiver. Furthermore, the mode of delivery for the streams may be either via
broadcast or broadband; candidate timelines for synchronisation need to be supported in encoding
formats for both types of streaming. A suitable candidate is TEMI timeline injection into MPEG2-TS.
TEMI support in media encoders ensure that the timing information injected in the input streams are
not affected by the encoding process. The TEMI-carrying MPEG2 transport streams can be used to
create DVB-T2 (broadcast) and MPEG-DASH (HTTP streaming) streams. It has been shown in (30) that
this mechanism of signalling timing can be used to synchronise broadcast and IP-delivered streams.

3.6.2.10 DMApp Runtime

The DMApp Runtime is responsible for running the DMApp on each host device. Due to the
heterogeneity of host device platforms (e.g. Android, iOS, HbbTV 2.0, laptop/PC browser
environments), it needs to adapt to its execution environment and device capabilities. For example,
on an HbbTV 2.0 device, it can leverage the Media Synchroniser API and App-2-App framework to

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 43 (of 69)

exchange timing information and application-messages with companion screen devices. It is the
component that is ultimately responsible for overseeing the loading and running of DMApp
Components in the DMApp. It does so through interaction with the Timeline Orchestration FG
(pushing DMApp state such as start-time, DMApp status) and by listening to commands from the
Layout Orchestration FG (for DMApp component (de-)activation and positioning in the UI.)

The functions of a DMApp Runtime can be enumerated as follows:

 DMApp initialisation and service setup: coordination of DMApp and context initialisation.

 DMApp component interface and base functionality: this forms the framework for all DMApp
components. DMApp components can be loaded from external sources as necessary.

 Receiving and actuating state updates from services: state updates from the Layout FG and
Timeline FG via multiple channels are processed, filtered and applied by the DMAppRuntime.

 State reporting to other FGs: updates to key state items, in particular clock changes and
component status changes, are reported to the Layout and Timeline FGs.

 Device discovery and advertisement of DMApp launching parameters: On communal devices,
the DMAppRuntime should enable a device discovery mechanism to allow discovery by personal
devices. Possible protocol-choices for this function are DIAL, mDNS, Bonjour. DIAL, in particular,
is the standard mechanism in HbbTV 2.0 devices. The DIAL solution also provides a mechanism to
share an app-launch API. Companion devices can automatically discover TV devices on the local
network and join existing sessions.

 Clock synchronisation and management: between devices by means of DVB-CSS, the app-to-app
channel, the shared state service and/or the cloud sync service, and between
components/modules on each device. Clock sync over app-to-app: when DVB-CSS sync is not
available

 Local layout and region management: local positioning of components and reporting of layout
region information and updates to the layout service.

 Layout region initialisation and management

 State signals, inter- and intra-device data management and binding: Intra-client communication
and signalling propagation of data to/from/via: layout service, shared state service, DMApp
components, inter-device app2app channel, internal client-API modules/functionalities, and
other data endpoints, as necessary.

 Media playback functionality: the client-API includes a generic media player DMApp component.

 Remote procedure call functionality: DMApp components, sub-resources thereof, and other
client-API resources can be directly addressed by other local or remote components or other
client-API hosted entities.

 Logging: collected logs are annotated such that they can be attributed to the source DMApp
component, module, or sub-section thereof.

 Platform-specific functionality: for Android, iOS, emulated TV and emulated companion
platforms.

 General software utilities: the client-API contains various generic utility functionality intended
for the use of DMApp component and DMApp authors.TODO: Jonathan to fill out section

 General debugging and diagnostics framework: various debugging, introspection, monitoring,
fault-detection, fault-correction, reporting and other developer utilities.

A DMAppRuntime is configured with a set of parameters which include the following:

 DeviceID

 Device State namespace/scope

 DMappComponents

 Device Layouts (from Layout Orchestration)

 LayoutDocument URL (from DMApp EPG)

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 44 (of 69) © 2-IMMERSE Consortium 2018

 TimelineDocument URL (from DMApp EPG)

 State signals (events) to bind listeners to (from DMApp description)

 DMApp variations: alternative TimelineDocuments (from DMApp EPG)

 Platform-deployment variations: edge, test (shared from launcher app on first device)

 Logging variations: (Analytics on or off, shared from launcher app on first device)

3.6.2.11 DMApp State Management

DMApps are inherently stateful. DMApp state comprises of

1. context state (identifiers, device membership),
2. orchestration state (device roles, layout, timeline, bandwidth, timing),
3. DMappComponent state (timing, status, execution state) and
4. DMApp user state.

This state changes dynamically throughout the execution of the DMApp.State is created as soon as a
DMApp is launched on a device:

1) The DMApp Runtime on the device is configured with DMApp configuration parameters (e.g.,
DMApp name, DMApp image URL, DMApp join text, UI layout region definitions, media
object origin server URL, WallClock source, etc.)

2) a context identifier is generated for that DMApp instance,
3) user-device pairing is recorded, and authentication tokens are issued to that device for

platform access.
4) for non-live DMApps, the DMApp start time (on the WallClock) is recorded and notified to

the DMApp orchestrator.

As additional devices are onboarded, they use discovery mechanisms (e.g. DIAL) to find the first
device and exchange DMApp launch metadata, context data and timing resources. They also obtain
from the device, the DMapp definition, the list of event names (or signals) the device (via its DMApp
Runtime) can subscribe to and actuate on.

Throughout the DMApp execution, the following DMApp state changes dynamically:

1) the current deployment of DMApp components (they can change hosts e.g. user moves
video to main screen),

2) the status of DMApp components (e.g. loaded, started, finished, unloaded),
3) DMapp component playback progress (e.g. current time on supplied Clock)
4) user-generated experience data (e.g. user score)
5) bandwidth quota for a DMApp component as indicated by the bandwidth orchestrator
6) Performance-, fault- monitoring data from various system components are logged

In addition to the different types of state, DMApp state has different scopes. The scope boundaries
can be geographical: device, LAN, distributed or logical: context, DMApp component. Whilst device
and network boundaries can be natural scope barriers, a system to manage and share state in multi-
device DMApps must provide a scoping or namespace mechanism that prevents uncontrolled access
to all DMApp state.

Distributed Shared State

In multi-device DMApps, state is not only distributed but also shared. Although, it is possible to
centralise all state, state is still held locally on devices and modified during the DMApp execution;

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 45 (of 69)

this state, if shared, will be replicated at the parties who have an interest in observing changes and
acting upon these.

To ensure that all devices and services have a consistent view of the distributed shared state, data
synchronisation is required; this is challenging in multi-device applications especially when shared,
server-side objects may be modified at any time and some level of consistency guarantees must be
ascertained. Whilst strong consistency guarantees are beneficial to DMApp execution, enforcing
these may require successive rounds of data exchange to achieve consensus. In DMApps (as in online
games) where the presentation timing is crucial to the QoE, one must trade off consistency
guarantees for low-latency shared state updates. For example, 2 phase-commit/distributed
transactions to achieve strong data consistency is not an option for many applications. Low latency
shared state updates, quick state-change signalling to observing clients and eventual consistency
may be the implementation directive for a DMApp state management system.

LAN-local State Signalling

Centralising state management via a cloud-based service offers a simple approach to persist state for
protection against system failures and for priming joining devices with the most up-to-date state.
However, in DMApps that are purely state-driven (as opposed to driven by linear timelines) and
whose execution only span a LAN, the communication with a cloud-hosted state synchronisation
service may be an undesirable overhead. In the Theatre-at-School DMApp, for example, execution of
the DMApp progresses via the teacher deciding when to activate particular sub-lessons (i.e. the
DMApp is state-driven) and the DMApp context spans only the classroom. State update
synchronisation mechanisms in these cases should favour LAN-local messaging to achieve low-
latency updates and state-change notifications.

State-Signal-to-Component Binding

The shared state mechanism used can include support for multi-device data-binding schemes for
application developers. This delivers a more declarative style of programming and reduces the
amount of bespoke application logic required. This function insulates the DMApp Components from
specifics of the shared-state method by providing an abstract programming interface for binding
listeners to state-signals.

3.6.2.12 DMApp Launching & On-boarding

The DMApp Launching & Onboarding FG encompasses functions related to user enrolment to the
DMApp platform, pairing of devices to user accounts, launching of DMApps on the host device and
discovering other devices to onboard in the running DMApp on the local network. The FG is
responsible for associating the actual devices with the device roles prescribed for the DMApp. The FG
provides a UI that allows users to select the DMApp to join and the role the device will fulfil in the
DMApp. It should also ensure that all mandatory device-roles in the DMApp are fulfilled (possibly
with interaction with the Timeline Orchestration FG). As functions will be required to run on multiple
device platforms (TV Emulator, Chromium and Cordova), cross-platform support is necessary.

The functions in the DMApp Launching & Onboarding FG include the following:

 User Enrolment: User signup/sign-in/sign-out

 Device Discovery: Find available devices that we can enrol (through pairing/association) in a
session or that we can interrogate for existing sessions (multiple strategies, technologies and
bridges between technologies exist)

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 46 (of 69) © 2-IMMERSE Consortium 2018

 Device communication: communication protocol between discovered devices and devices
associated with a session

 Capability Discovery: Find available devices by function

 Association: Dynamic association of devices with a specific session (context enrolment -
join/launch, remote enrolment, notifications)

 Session Discovery: Discovery of running sessions (currently enumerated via DIAL, Editor
service + hardcoded programmes, or via pre-agreed session code for inter-home)

 Session Creation: Launch of a new programme/session

 Multi-device Authentication: Secure platform access for devices by linking them with user
identities. Provides a means of securely acquiring authorised tokens.

3.6.2.13 Security FG
Authentication, authorisation and access control functions are needed, as in most platforms, to
control access to resources and functionality. For example, all platform clients need to be identified
uniquely and associated with user accounts. Only legitimate clients should be given access to
platform services or interact with and trust other peers. Dedicated authorisation functions are
usually used to achieve this. Media streams should also be protected from illegitimate access. DRM
solutions for media streams abound in the industry and a survey of them is beyond the scope of this
document.

In summary, functions in the Security FG include the following:

 Identity management: Account creation, access token invalidation and expiration, admin user
interface

 Defined User Roles: Admin, Demonstrator, User, Experience Admin, Debug

 Authentication of users: Credential verification, multiple forms of authentication could be used,
including those that support Multi-Factor Authentication (MFA).

 Authentication of applications. If an application invokes other services, OAuth 2.0 refers to it as
a “Client”. This is true regardless of whether the application is running on an end user device or if
it is a server-based application.

 Generation of tokens that assert identities and granted scopes.

 Provisioning and tracking of granted scopes. Specific applications and users can be granted
access to specific features / resources.

 Device account pairing: Securely granting access credentials to remote devices

 Assign unique ids to nodes

 Assign unique ids to users

 An alternative rendezvous mechanism to exchange experience launch payload (when clients
contact the auth function with the same DMApp and context identifiers). This can simplify
DMApp launching on joining devices

3.6.2.14 Management FG
The Management FG comprises of an assortment functions related to the configuration and
management of the DMApp as well as the platform.

For instance, during DMApp execution, the DMAppRuntime and the client application hosting it,
need to be configured with the following (non-exhaustive) list of parameters for correct operation:

 a URL for the DMApp base web app (assuming that a generic app loads/runs bespoke web
applications for each DMApp9)

9 This is purely an implementation strategy decision: it is entirely possible for DMApp developers to build
custom native Android/iOS apps; these will need to include the DMAppRuntime functionality. For the purpose

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 47 (of 69)

 host device mode (TV, companion, TV emulator or companion device emulator),

 default URLs for services (e.g. the origin server or platform service endpoints),

 location of Layout and Timeline documents,

 UI region declarations for the particular device,

 the root layout region selector name,

 a base URL for loading styling media assets e.g. menu icons, images, CSS documents, etc.

 optional data to include in device advertisements during discovery (this is used to onboard new
devices)

In terms of the actual DMApp platform, irrespective of its deployment setting (whether cloud-based,
stand-alone), the dynamic nature of the deployment environment requires that

 configuration information about the platform services is maintained and synchronised across
all deployment environments (e.g. each cloud-based host),

 platform capabilities are fulfilled by starting service instances on different hosts and their
deployment coordinated10; it is likely that a single capability will have multiple service
instances fulfilling it in the interest of load-balancing, performance via horizontal scaling and
robustness,

 service-names are resolved to particular instances of a platform capability

 the health of platform services be monitored and services be restarted if necessary.

 A web UI is available for platform-admins to check the status of the services. The
information displayed is obtained via the Rancher REST API.

In terms of timing, the platform requires that a global timing source (usually a monotonic clock) be
provided for

 time synchronisation on presentation devices,

 time-alignment on capture devices use by media encoders for

 timeline signalling in media streams
Thus, the management FG also includes a global reference time source selection function.

Logging and monitoring provides functionality for the creation, aggregation, processing, storage and
presentation of information relating to services and DMApps. This information may be used to
monitor the health of these services and applications, to identify errors and bugs during operation or
to provide a detailed understanding of how they are being used.

 Message creation: Services and DMApps create log messages in accordance with a pre-
defined schema, containing sufficient information to identify the source of the message, a
timestamp from a global clock and information about the context in which it was created.

 Message aggregation: Log messages from different sources are received by a single service
which may include a processing pipeline to drop unwanted messages, enrich them with
additional information (eg. geolocation data), correlate them with other messages (e.g.
linking multiple devices within a session) or change their formatting.

of reuse, consistency and compliance to open standards, the 2Immerse project decided to follow the web
component approach.

10 In cloud-based platforms, containers provide lightweight OS virtualisation solution for packaging code and
dependencies together (including system dependencies). Systems such as Kubernetes automate the
deployment, scaling, and management of these containerised applications.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 48 (of 69) © 2-IMMERSE Consortium 2018

 Indexed data storage: A suitable database solution is used for efficient storage, indexing and
lifecycle management of log data (including archiving).

 Data querying: Aggregated log data is retrieved and filtered using an appropriate query
language, paired with a user interface.

 Data visualisation: Aggregated log data may be used to create graphs and other
visualisations to help interpret performance or usage information. Graphs may be created
retrospectively or updated in near real-time as new log messages are received.

3.6.2.15 Origin Server FG
Basic HTTP/S based service used to host client applications, DMApp Components and their assets,
timeline and layout documents, and media.

A basic asset structure may be required for organizing these assets on the origin server.

In 2Immerse, the origin server was implemented using an AWS S3-backed web service serving as the
origin, proxied by CloudFront for scalability and registered using Route53 for indirection.

3.6.2.16 Timeline Editor FG
For the purpose of the reference architecture we will only consider the role of the editor in allowing
a director to modify the live experience of viewers while the experience is running.

Timeline editing is based on the following concepts:

 Editable timeline: a superset of the timeline document for the timeline service, including a
number of timeline event templates.

 Timeline event template: an authored snippet of timeline that can be inserted into the
timeline after supplying parameters such as start time and duration.

 Timeline edit: the operation of inserting such a snippet into the running timeline after
supplying the parameters.

 Client: for the editor, a client is the complete set of components and services that play back
an experience in a single home: context, DMApp, timeline and layout instances, client-api
instances, etc.

 Preview Client: the client used by the director for previewing their edit operations.

The Timeline Editor functions include the following:

 User Interface: the editor should provide the director with a list of currently active event
templates and allow them to instantiate these, as well as a list of already instantiated events
and possibly allow them to be removed.

 Timeline Document Management: the editor will serve timeline documents to newly started
clients, so these clients will have an up-to-date view of the experience as it is now, including
all edits that have already been made.

 Timeline Modification Forwarding: the editor opens a websocket to broadcast timeline edits
to all clients that are playing the current experience.

 Timeline Modification Retrieval: Timeline edits are sequenced, so client timeline service
instances are aware when they have missed any edits. The editor will supply the missing
edits on request.

 Notification Management: the editor listens to a websocket that the preview client timeline
server instance sends state and clock updates to. The editor uses these to update the user
interface, and to determine the correct clock value at which to insert timeline edits.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 49 (of 69)

 Preview Player Control: if the editor is running in as-live mode it provides the producer with
a player control panel to pause, resume and position playback. These commands are
forwarded to the client-api in the preview player.

3.6.2.17 Data Playback FG
Data playback is the collection name for services capturing and distributing non-audio and non-video
information related to the 2-immerse experience. The information can be used on client side as data
driven graphics and or as content driver on companion devices. The type of this information is widely
different depending on production or event. In for example MotoGP the information would mainly
consist of timing data and in football mainly game scouting events.

 Data source: External information source for production related information. I.E. scouting
data or timing data and similar.

 Block of information: State shift or event related to a specific time.

 Subscribed category: Information relating to a specific subject.

Functions include the following:

 Manage different data sources: Provide public API to the data storage, and or micro service
adapters for existing data sources.

 Persisting block of information: Information available before, created during and available
after a certain production event is time stamped in relation to the production time. Every
data sample is stored for later playback retrieval.

 Send live information: For live productions, live captured data is relayed directly clients.

 Respond to request of data: For in live catch-ups and VOD situations client can request
missing information.

3.7 The Architecture View

Once the concepts and functions have been saturated in the iterative analysis, the Functional View is
transformed into the Architecture View. The architecture view presents the structural aspects of the
DMApp-RA; It, describes how the general functions from the Functional View are organised into
architectural services and how these functions are accessed. Although the Architecture View must be
kept relatively abstract, some architectural design patterns are applied. For communication and
interaction between the functional elements, particular interaction styles are recommended. This
section builds upon the Functional View section to propose an abstract Architecture View for the
DMApp Reference Architecture. Particular structural abstractions and interaction paradigms are
suggested as general design patterns to include in the DMApp-RA; implementation patterns are
precluded from the DMApp-RA, leaving adopters to fix these aspects when generating concrete
architectures for their DMApp platforms. The DMApp-RA Architecture View is shown in Figure 7.

3.7.1 Architectural Abstractions and Patterns for Functions/Function Groups

3.7.1.1 Microservices Architecture Pattern

Without loss of generality (as to where the functions are deployed and how they are invoked), it is
possible to apply structural patterns to promote functionality cohesion and decoupling, as a means
to manage the complexity of platforms. For functions that need to be accessed by other elements,
we propose the use of microservice abstractions to encapsulate them.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 50 (of 69) © 2-IMMERSE Consortium 2018

Microservices are useful abstractions for building modular platforms and each microservice typically
implements a set of distinct function. Each service has a well‑defined boundary in the form of an
RPC‑ or message‑driven API. The Microservices Architecture pattern enforces a level of modularity
that in practice is extremely difficult to achieve with a monolithic codebase. Consequently, individual
services are much faster to develop, and much easier to understand and maintain. The caveat of this
pattern is the potential for data duplication as each microservice maintains its own database11. More
complex data management is the trade-off for this flexibility, especially if we want to achieve a level
of data consistency approaching the ACID properties of more centralised relational schema-based
solutions. It is possible to use events to implement transactions that span multiple services. A
transaction consists of a series of steps with the opportunity to commit or rollback the changes
implied by it. Each step consists of a microservice updating an entity and publishing an event that
triggers the next step (31).

The DMApp-RA does not define implementation mechanisms for microservices and avoids making
any assumptions in terms of a deployment topology. The microservices can be deployed as

o containerised services hosted on a cloud-platform, or
o services running on a dedicated device in the living room (e.g. compute sticks, set-top boxes), or
o server-less microservices (cf. AWS Lambda) that are submitted to a compute-provisioning

platform
o a completely decentralised server-less topology with each device running a full set of

microservices and each microservice interacting with its counterpart on another device in a P2P
manner

The decision as to map a DMApp-RA FG into one microservice or number of them is best left to
platform developers. They can use best implementation practice guidelines to decide on the
granularity of the microservices and the functions they cover. A possible micro-servce based
architecture is suggested in Figure 8. However, this should only be taken as one of many possible
design alternatives.

3.7.1.2 Additional Infrastructural Services

API Gateway

Although it is possible for clients to directly invoke microservice APIs, there is often a mismatch
between needs of the client and the fine‑grained APIs exposed by each of the microservices. An API
Gateway for distributed services provides single entry point into the system It may also have other
responsibilities such as authentication, monitoring, load balancing, caching, request shaping and
management, and static response handling. The API Gateway handles some requests by simply
routing them to the appropriate backend service. It handles other requests by invoking multiple
backend services and aggregating the results.

Service Discovery

Because the microservices can be potentially distributed across different hosts, clients need to be
aware of the microservice instances network location for service invocation. Server-side
deployments require extra services such as service registrators to maintain a database of
microservice locations. On-site deployments, on the other hand, can use service discovery protocols
(e.g. SSDP, Bonjour, DIAL, mDNS) to enable services to advertise their locations to clients on the
network.

11 Data access becomes much more complex when we move to a microservices architecture. That is because
the data owned by each microservice is private to that microservice and can only be accessed via its API.
Encapsulating the data ensures that the microservices are loosely coupled and can evolve independently of one
another.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 51 (of 69)

3.7.2 Communication Paradigms and Interaction Styles

The communication model in the DMApp-RA supports communication paradigms for connecting
elements in the DMApp domain. The communication between elements needs to support different
paradigms: unicast is the mandatory solution for one-to-one connectivity and multicast and anycast
are needed for fulfilling many other platform requirements, such as data collection and state-
signalling, etc.

The DMApp-RA Architecture View (shown in Figure 7) includes an Event Bus as a communication
pattern for the interaction between distributed elements, services and clients. Although, the event
bus implies an asynchronous, messaging‑based mechanism and its support for the different
communication paradigms, the DMApp-RA leaves the interaction style to be fixed by platform
developers.

When selecting an IPC mechanism for a service, it is useful to think first about how services interact.
There are two dimensions to the possible interaction styles. The first dimension is whether the
interaction is one‑to‑one or one‑to‑many:

 One‑to‑one – Each client request is processed by exactly one service instance.

 One‑to‑many – Each request is processed by multiple service instances.

The second dimension is whether the interaction is synchronous or asynchronous:

 Synchronous – The client expects a timely response from the service and blocks while it
waits.

 Asynchronous – The client doesn’t block while waiting for a response, and the response, if
any, isn’t necessarily sent immediately.

The following table shows the various interaction styles.

 One-to-One One-to-Many

Synchronous Request/response —

Asynchronous Notification Publish/subscribe

Request/async response Publish/async responses

Table 6: Interaction styles for inter-FG communication in DMApp-RA

Each service typically uses a combination of these interaction styles. For some services, a single RPC
mechanism is sufficient. Other services might need to use a combination of IPC mechanisms.

Several IPC technologies are available to implement these interaction style and the selection of these
is left to the platform developer. These technologies are usually based on the following mechanisms:

 Asynchronous, Message‑Based Communication (e.g. AMQP, STOMP): Processes communicate by
asynchronously exchanging messages. A client makes a request to a service by sending it a
message. If the service is expected to reply, it does so by sending a separate message back to the
client. The communication is asynchronous, the client does not block waiting for a reply. Instead,
the client is written assuming that the reply will not be received immediately. Reactive
programming models are useful abstractions to manage code complexity here.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 52 (of 69) © 2-IMMERSE Consortium 2018

 Synchronous, Request/Response IPC (REST, Apache Thrift, gRPC): a client sends a request to a
service; the service processes the request and sends back a response. In many clients, the thread
that makes the request blocks while waiting for a response. Other clients might use
asynchronous, event‑driven client code that is perhaps encapsulated by Futures or Rx
Observables.

 Message formats (Protocol Buffers, Apache Avro): when using message-based IPC mechanisms
(e.g. AMQP, Thrift, gRPC), it is desirable to use a cross‑language message format; microservice
implementations and clients may be written in different languages. Binary message formats are
less human-readable as text formats but offer more efficient bandwidth utilisation.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 53 (of 69)

Figure 7: DMApp-RA Architecture View

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 54 (of 69) © 2-IMMERSE Consortium 2018

Figure 8: A possible Microservices Pattern application to the Architecture View

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 55 (of 69)

3.7.3 DMApp-RA Function Example Implementations

2Immerse software components provide example implementations of the DMApp-RA elements.
Table 7 Provides a mapping between the 2Immerse open-sourced software components and the
DMApp-RA Function Groups. The table also specifies the component’s coverage of the functions.

Table 7: Example implementations of DMApp-RA elements

DMApp-RA
Functional Element

Example
implementation

(Open-Source Repository)

Functions Community
Manager

DMApp Runtime client-api DMAppRuntime functions implemented
in JS and packaged to run on Android,
iOS, HbbTV emulators and HbbTVs

DMApp Init, DMAppC base impl,
Timeline client, Layout client,
Clock creation & sync, DMAppC
status publisher

BT

DMApp Launch &
Onboarding

launcher Multi-experience launcher web
application for TVs and companions
scoping user enrolment, device
discovery, device association, multi-
device authentication, session discovery
and session creation.

DMApp EPG, Device-role
association, Device Discovery,
App Launch/Stop, Auxiliary data
payload

BBC

DMApp Launch &
Onboarding

android-unified-
launcher

Cordova applications to wrap unified-
launcher web application as a native app
for Android.

BBC

DMApp Launch &
Onboarding, Timing &
Media
Synchronisation

hbbtv-lib A library of modules for common HbbTV
functionality

HbbTV App launch, Inter-device
media sync for HbbTV devices

IRT

Timing & Media
Synchronisation

dvbcsstv-lib The JS library for the dvbcss browser
proxy (client-api dependency) DVB-CSS
protocols for HbbTV Emulation

Inter-device media sync for
HbbTV Emulators, HbbTV App-2-
app comms.

BBC

Timing & Media
Synchronisation

Inter-device media
sync for mobile
devices

synckit A JS library API to enable
synchronisation of media as directed by
HbbTV Media Synchroniser (a client-api
dependency). Android DVB-CSS
protocol-clients

Inter-device media sync for
Android

BBC

Timing & Media sync-protocols JS library implementing client and server
protocols for media synchronisation

BBC

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 56 (of 69) © 2-IMMERSE Consortium 2018

Synchronisation between TVs and companion screen
applications via DVB CSS

Inter-device media sync for iOS,
HbbTV Emulators

Timing & Media
Synchronisation

Clock abstractions

dvbcss-clocks software "clock" objects in JS. Used to
model media timelines, timing clocks
and Timeline Shadows (for cloud-sync
IDMS)

Sync timeline local clock

BBC

Timeline
Orchestration

timeline-service Service to orchestrate timing and events

Timeline model, timeline
controller, timeline event
actuator, timeline edit actuator,
sync clock selector

CWI

Layout Orchestration layout-service Service to orchestrate layout of content
for a multi-screen experience.

Layout model, layout controller,
Context Management

CISCO

Bandwidth
Orchestration

bandwidth-
orchestration

Component Bandwidth Orchestration
Service.

Bandwidth model, Bandwidth
controller, Bandwidth allocation

policies

CISCO

Bandwidth
Orchestration

bandwidth-
orchestration-client

Client for the bandwidth orchestration
service. This client contains the
SANDPlayer module that manages a
Dash.JS player and send statistics to the
BOS.

Bandwidth usage collection,
Bandwidth allocation
dissemination

CISCO

DMApp State
Management

Middleware

shared-state-service This is a fork of the MediaScape shared
state service, licensed under the Apache
License, Version 2.0.

Data synchronisation, scopes,
change notifications

DMApp State
Management

shared-state-client Client code from the Mediascape
SharedState repository organised as a
npm package.

BT

DMApp State
Management

LAN-Local State
Signalling

client-api State change notification over App-2-
App channels

Data synchronisation, scopes,
change notifications

BT

Middleware websocket-service Service to support service->client push
communications

scopes, pub-sub message
delivery via WebSockets

CISCO

Timing & Media
Synchronisation

Reference Clock

wallclock-service A lightweight time (WallClock)
synchronisation service for frame-
accurate synchronised experiences.

Time synchronisation, WallClock

BBC

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 57 (of 69)

Timing & Media
Synchronisation

cloud-sync Media Synchronisation Service and JS
client library. Service comprises of a set
of microservices. A demo-app hosting
microservice is also provided.

Inter-destination Media
Synchronisation

BBC

Security

auth-service Authentication service

User identity management, user
role management, access token
& scope mgt, device account
pairing

CISCO

Security auth-admin Admin interface for the auth-service CISCO

Management renderer Realtime multi-device layout
visualisation tool for the layout service

DMApp monitoring

CISCO

Management logging-service A lightweight service which flattens a
JSON structure sent via HTTP POST and
pushes it to stdout, where it is collected
and sent to Logstash and the rest of the
ELK stack.

Log message creation, log
aggregation, log storage, log
queries and visualisation

CISCO

DMApp Authoring &
Validation

2immerse-editor Platform for creating 2IMMERSE
presentations in the browser

DMApp Authoring & Validation

CWI

HbbTV Emulator system-images HbbTV2.0 emulator firmware for the
Intel NUC

HbbTV Emulation

BBC

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 58 (of 69) © 2-IMMERSE Consortium 2018

4 Conclusion

This report has presented a public proposition of the 2Immerse project to the community of users in
the distributed orchestrated media application domain. This proposition is two-fold.

In order to enable the community to run and experiment with DMApps, a stand-alone version of the
platform deployment has been made publicly available with usage instructions. The platform is a
collection of useful functions and the function implementations (services, components, libraries) are
themselves valuable resources for DMApp community developers. To help encourage similar DMApp
building initiatives as 2Immerse, the consortium has publicly released all the software components
required to run the platform services, create DMApp components and run authored DMApps. This
report has provided a listing of all software components made open-source and the locations of the
code repositories. This is the culmination of concerted efforts within the consortium to prepare code
repositories (e.g. documentation) for public release.

Another aspect of the public proposition is a reference architecture for distributed orchestrated
media application platforms. The report documents the derivation process of the reference
architecture and presents the core functions, structures and their respective elements, and the
interaction between these elements. The reference architecture called DMApp-RA, represents a
good template for instantiating concrete DMApp-platforms and whilst it leaves implementation
choices to the RA-adopters, it suggests possible solutions and mechanisms for building the functions.
The reference architecture is also a useful guide to the 2Immerse project open-source contributions.
Since it describes platform functions at an abstract level, it allows users to understand how the
platform components fit within a DMApp system of systems.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 59 (of 69)

5 References

1. 2Immerse. D2.1 System Architecture. 2016.

2. —. D2.2 Platform-Component Interface Specifications. 2016.

3. —. D2.3 Distributed Media Application Platform and Multi-Screen Experience Components:
Description of First Release . 2016.

4. MPEG Media Orchestration. MPEG . [Online] [Cited: 15 November 2018.]
https://mpeg.chiariglione.org/standards/mpeg-b/media-orchestration/wd-isoiec-23001-13-media-
orchestration-more.

5. Presentation API. W3C. [Online] 1 June 2017. [Cited: 12 November 2018.]
https://www.w3.org/TR/presentation-api/.

6. DVB-CSS. DVB. [Online] 03 August 2017. [Cited: 10 November 2018.]
https://www.dvb.org/standards/dvb_css.

7. BBC Taster. The Vostok-K incident. [Online] 2018. [Cited: 01 December 2018.]
https://www.bbc.co.uk/taster/pilots/vostok.

8. Cisco. The Future of TV: Coming Soon to a Wall Near You. [Online] 12 February 2013. [Cited: 15
October 2018.] https://blogs.cisco.com/news/the-future-of-tv-coming-soon-to-a-wall-near-you.

9. W3C. Synchronized Multimedia Integration Language (SMIL 3.0). [Online] 01 December 2008.
[Cited: 15 November 2018.] https://www.w3.org/TR/SMIL3/.

10. BBC R&D. Object-Based Media Toolkit. [Online] 2017 December 01. [Cited: 01 November 2018.]
https://www.bbc.co.uk/rd/projects/object-based-media-toolkit.

11. MediaScape. GitHub. [Online] [Cited: 01 Novemver 2018.] https://github.com/mediascape.

12. 2Immerse. YouTube 2Immerse Channel. YouTube. [Online] [Cited: 10 January 2018.]
https://www.youtube.com/channel/UCpGa5NU1Bbj8Nkz0vZi7IwA.

13. Reed, Paul. Reference Architecture: The best of best practices. IBM Developer. [Online] 15
September 2002. [Cited: 14 December 2018.]
https://www.ibm.com/developerworks/rational/library/2774.html.

14. Richardson, Chris. Pattern: Server-side service discovery. microservices.io. [Online] 2015. [Cited:
15 October 2018.] https://microservices.io/patterns/server-side-discovery.html.

15. Moreno, Marcio Ferreira and Costa, Romualdo M. de R. Specifying Intermedia Synchronization
with a Domain-Specific Language: The Nested Context Language (NCL). [book auth.] Mario
Montagud, et al. MediaSync Handbook on Multimedia Synchronization. s.l. : Springer, 2018.

16. Bulterman, Dick C. A. SMIL: Synchronized Multimedia Integration Language. [book auth.] Mario
Montagud, et al. MediaSync Handbook on Multimedia Synchronization. 2018.

17. Enhancing MPEG DASH Performance via Server and Network Assistance. Thomas, et al. 126, 2017,
Vol. SMPTE Motion Imaging Journal.

18. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive.
Jiang, J., Sekar, V. and Zhang, H. s.l. : ACM CoNEXT, 2012.

19. Client-Driven Network-level QoE fairness for Encrypted 'DASH-S. Chen, Junyang, et al. s.l. : ACM
Internet-QoE '16, 2016. DOI: https://doi.org/2940136.2940144.

20. 2Immerse. D2.4 Distributed Media Application Platform and Multi-Screen Experience
Components: Description of Second Release. s.l. : 2Immerse, 2018.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 60 (of 69) © 2-IMMERSE Consortium 2018

21. Approximation of the Quadratic Knapsack Problem. Taylor, Richard. 1, January 2016, Operations
Research Letters, Vol. 44. http://dblp.uni-trier.de/pers/hd/t/Taylor:Richard.

22. A Dynamic Programming Heuristic for the Quadratic Knapsack Problem. Franklin Djeumou
Fomeni, Adam N. Letchford. s.l. : INFORMS, 22 July 2013, INFORMS Journal on Computing.
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2013.0555.

23. Approximation of the Quadratic Knapsack Problem. Ulrich Pferschy, Joachim Schauer. s.l. :
INFORMS, 5 April 2016, INFORMS Journal on Computing.
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2015.0678.

24. Exact Solution of the Quadratic Knapsack Problem. Informs Journal on Computing. Caprara,
Alberto & Pisinger, David & Toth, Paolo. s.l. : INFORMS, October 1998, INFORMS Journal on
Computing.

25. HbbTV. HbbTV 2.0.1 Specification with Errata #3 Integrated. [Online] [Cited: 05 October 2018.]
https://www.hbbtv.org/wp-content/uploads/2018/02/HbbTV-SPEC20-00058-004-Errata-3-to-TS-
102-796-V141.pdf.

26. The media state vector: a unifying concept for multi-device media navigation. Arntzen, Ingar M.,
Borch, Njål T. and P. Needham, Christopher. s.l. : 5th Workshop on Mobile Video (MoVid '13), 2013.

27. Design and Simulation of a Distributed Control Scheme for Inter-destination Media
Synchronization. Montagud, M., Boronat, F. and Stokking, H. s.l. : IEEE 27th International Conference
on Advanced Information Networking and Applications (AINA), 2013.

28. Self-Organized Inter-Destination Multimedia Synchronization For Adaptive Media Streaming.
Rainer, Benjamin and Timmerer, Christian. s.l. : 22nd ACM international conference on Multimedia
(MM '14), 2014.

29. QoE-aware inter-stream synchronization in open N-Screens cloud. Mu, Mu, et al. Las Vegas : 2016
13th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2016.

30. HbbTV-Compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-
Device Scenarios,. F. Boronat, D. Marfil, M. Montagud and J. Pastor. 3, s.l. : IEEE Transactions on
Broadcasting,, 2018, Vol. 64. doi: 10.1109/TBC.2017.2781124.

31. Event-Driven Data Management for Microservices. NGinx. [Online] NGinx. [Cited: 01 December
2018.] https://www.nginx.com/blog/event-driven-data-management-microservices/.

32. Ramdhany, Rajiv. Dynamic deployment and reconfiguration of ad-hoc routing protocols.
Lancaster : Lancaster University, 2011.

33. Bassi, Alessandro, et al. Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural
Reference Model. s.l. : Springer, 2016. ISBN:3662524945 9783662524947.

34. 2Immerse. D4.4 Prototype Service Descriptions – Second Update. 2018.

35. ISO/IEC 23009-5:2016: "Information Technology — Dynamic adaptive streaming over HTTP
(DASH) — Part 5: Server and network assisted DASH (SAND). ISO/IEC. 2016. 23009-5:2016.

36. 2Immerse. D3.3 User Interaction Design: the development of generic components & features to
inform MotoGP Service Trials, Production Tools, and OnBoarding. 2017.

37. mantl.io. mantl.io. [Online] [Cited: 10 January 2018.] http://mantl.io/.

38. rancher.com. rancher.com. [Online] [Cited: 10 January 2018.] http://rancher.com/.

39. consul.io. consul.io. [Online] [Cited: 10 January 2018.] https://www.consul.io/.

40. influxdata.com. influxdata.com. [Online] [Cited: 10 January 2018.] https://www.influxdata.com/.

41. mongodb.com. mongodb.com. [Online] [Cited: 10 January 2018.] https://www.mongodb.com/.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 61 (of 69)

42. Registrator. Registrator. [Online] [Cited: 10 january 2018.]
http://gliderlabs.github.io/registrator/latest/.

43. logspout. github.com. [Online] [Cited: 10 January 2018.] https://github.com/gliderlabs/logspout.

44. tyk.io. tyk.io. [Online] [Cited: 10 January 2018.] https://tyk.io/.

45. traefik.io. traefik.io. [Online] [Cited: 10 January 2018.] https://traefik.io/.

46. prometheus.io. prometheus.io. [Online] [Cited: 10 January 2018.] https://prometheus.io/.

47. GitLab Runner. gitlab.com. [Online] [Cited: 10 January 2018.] https://docs.gitlab.com/runner/.

48. kibana. elastic.co. [Online] [Cited: 10 January 2018.] https://www.elastic.co/products/kibana.

49. Logstash. elastic.co. [Online] [Cited: 10 January 2018.] https://www.elastic.co/products/logstash.

50. letsencrypt.org. letsencrypt.org. [Online] [Cited: 10 January 2018.] https://letsencrypt.org/.

51. mattermost.com. mattermost.com. [Online] [Cited: 10 January 2018.]
https://about.mattermost.com/.

52. sensuapp.org. Sensu. [Online] [Cited: 10 January 2018.] https://sensuapp.org/.

53. uchiwa.io. uchiwa.io. [Online] [Cited: 10 January 2018.] https://uchiwa.io/.

54. typescriptlang.org. typescriptlang.org. [Online] [Cited: 10 January 2018.]
http://www.typescriptlang.org/.

55. OAuth 2.0. oauth.net. [Online] [Cited: 10 January 2018.] https://oauth.net/2/.

56. 2-IMMERSE Auth Service API documentation. 2Immerse origin. [Online] 10 January 2018.
https://origin.platform.2immerse.eu/docs/auth-service/latest/.

57. Layout Service Documentation. 2Immerse Origin. [Online] [Cited: 10 January 2018.]
https://origin.platform.2immerse.eu/docs/layout-service/ .

58. React. reactjs.org. [Online] [Cited: 10 January 2018.] https://reactjs.org/.

59. bbc/pydvbcss. github.com. [Online] 10 January 2018. https://github.com/bbc/pydvbcss. .

60. 40 MHz Channels. Metageek. [Online] [Cited: 10 January 2018.]
https://support.metageek.com/hc/en-us/articles/204490510-40-MHz-Channels.

61. Apple's secret "wispr" request. blog.erratasec.com. [Online] 10 January 2018.
http://blog.erratasec.com/2010/09/apples-secret-wispr-request.html#.WUbAxvryuAw.

62. Captive portal popups: the definitive guide [closed]. serverfault.com. [Online] [Cited: 10 January
2018.] https://serverfault.com/questions/679393/captive-portal-popups-the-definitive-guide .

63. Quick and dirty captive portal with dnsmasq. reddit.com. [Online] [Cited: 10 January 2018.]
https://www.reddit.com/r/darknetplan/comments/ou7jj/quick_and_dirty_captive_portal_with_dns
masq/ .

64. Chromium Beta branch. launchpad.net. [Online] [Cited: 10 January 2018.]
https://launchpad.net/~saiarcot895/+archive/ubuntu/chromium-beta.

65. List of Chromium Command Line Switches. Peter Beverloo. [Online] [Cited: 10 January 2018.]
https://peter.sh/experiments/chromium-command-line-switches/.

66. Chrome remote debugging doesn't work with IP. stackoverflow.com. [Online] [Cited: 10 January
2018.] https://stackoverflow.com/questions/6827310/chrome-remote-debugging-doesnt-work-with-
ip.

67. HDMI 2.0 vs 1.4: What’s the difference? Read more at
http://www.trustedreviews.com/opinion/hdmi-2-0-vs-1-4-2913356#MElTQpycTAlU5Eut.99.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 62 (of 69) © 2-IMMERSE Consortium 2018

trustedreviews.com. [Online] [Cited: 10 January 2018.]
http://www.trustedreviews.com/opinion/hdmi-2-0-vs-1-4-2913356#UeixwjfXgh3zvDbQ.99.

68. Intel NUC. archlinux.org. [Online] [Cited: 10 January 2018.]
https://wiki.archlinux.org/index.php/Intel_NUC.

69. Quadratic knapsack problem. wikipedia.org. [Online] [Cited: 10 January 2018.]
https://en.wikipedia.org/wiki/Quadratic_knapsack_problem.

70. David Pisinger's optimization codes . diku.dk. [Online] [Cited: 10 January 2018.]
http://www.diku.dk/~pisinger/codes.html.

71. ExoPlayer. google.github.io. [Online] [Cited: 11 January 2018.]
http://google.github.io/ExoPlayer/.

72. Universal Windows Platform documentation. microsoft.com. [Online] [Cited: 11 January 2018.]
https://docs.microsoft.com/en-us/windows/uwp/.

73. Microsoft HoloLens. microsoft.com. [Online] [Cited: 11 January 2018.]
https://www.microsoft.com/en-gb/hololens.

74. W3C. Presentation-API. [Online] 2017. [Cited: 15 November 2018.]
https://www.w3.org/TR/presentation-api/.

75. Ramdhany, Rajiv. PhD Thesis: Dynamic deployment and reconfiguration of MANET routing
protocsol. s.l. : Lancaster University, 2009.

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 63 (of 69)

6 Appendix A – IBC 2018 Flyer

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 64 (of 69) © 2-IMMERSE Consortium 2018

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 65 (of 69)

7 Appendix B – DMApp-RA Functional View Building
Process

The following instructions describe how to generate a Functional View from the DMApp-RA
Functional Model.

1. Identify functions associated with new concepts in the new platform, generalise them and group
them into Functionality Groups

2. Determine if functionality bundled together with other functions belong to the same group or
can be partitioned into another group

3. Identify commonalities and variabilities in the functions.
o Some functions may be similar to functions seen from the previous iteration
o Determine if each function is general or it is a variation (specific instance) of a general

function.
o For each general function or category, list the variabilities.
o Variabilities denote the features that change between instantiations of the reference

architecture.
4. Capture the way the functionality is accessed or interacts with other functions.

o This is often as important as identifying the functionality itself.
o Determine if the interaction can be generalised through a design pattern

5. Build the functional view by listing the function categories and then in each category, listing
variabilities

o In each category, specify
i) the common responsibility R that generalises the different alternatives.
ii) the different alternatives that realise R
iii) the kind of variability required, e.g.

 A common interface with different implementations
 Changing platform behaviour by replacing entire services
 Changing platform behaviour by the inclusion of new delta functions in

services
 Adding anomalous behaviour to a sequence of common operations

6. In successive iterations, repeat the generalisation process until no more general functions are
created.

Figure 9 and Figure 10 show examples of Functional Views derived in other reference architectures
or software frameworks.

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 66 (of 69) © 2-IMMERSE Consortium 2018

Figure 9: Functional View method applied to MANET routing protocols to identify Functionality
Groups and functions (32)

Figure 10: Functional View of the IoT Reference Architecture (33)

Path
Discovery
Initiation

Path Metric
Request

Path Metric
Reply

Path Metric
Change

Notification

Path
Invalidation

Reactive Path Discovery

Local
Topology
Discovery

LS
Collection

DV Table
Exchange

Link
Stability

Proactive Network State Collection

Location
Update … Battery

Level

Reactive
Path

Selection

Multipath
Selection

Dijkstra Path
Computation

Path Selection

Protocol State Mgt.

Sensor

1
…

Sensor

n

Context Sensing

Route

Table

Neighbour

Table

Link

Set
…

Core Node Network Selection

1-Hop
Broadcast

Unicast
Pure

Flooding
Relay

Flooding

Packet Delivery

Hazy
Sighted
Flooding

…
Gossip-
based

Flooding

Forward

Engine

Packet
Scheduling

Round-
Robin

Multipath

Packet Forwarding

Control-
Message

Piggyback

Split-n-
Save

Multipath

OS
Forward
Engine

MPR Set
Computation

Connected
Dominating
Set Comp.

Clusterhead
Selection…

Route
Discovery

Trigger

Packet
Filter

Packet Buffer
Management

System Support

OS Abstraction APIs

…

Message
Builder

Timer
Management

Thread
Management

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 67 (of 69)

8 Appendix C – Intermediate Results of the DMApp-RA
Elicitation Methodology

8.1 Functional Model

Our first iteration of the methodology (using the Theatre at Home DMApp) resulted in the FGs shown
in Error! Reference source not found.

 DMApp DMAppComponent

 User Communication (Protocol stacks)

 Context LayoutOrchestrator

 Device (Personal/Shared/Communal) MediaDataSource

 State Management ContentStore

 Client-API HbbTV2.0 functions

 Timeline

 Timeline Orchestration

 Layout Orchestration

 Media Synchronisation

 WallClock

Table 8: Functional Groups after first iteration (Theatre-at-Home DMApp)

8.2 First Iteration of the Functional View based on the initial Theatre-
At-Home DMApp

The first iteration of functional decomposition was based on the Functional Model derived from the
Theatre-At-Home DMApp. It was as expected, the most effort-intensive step part of the process as it
involves identifying the core functions.

Since incremental addition of new functionality was made to the 2Immmerse platform to suit the use
case requirements and application domain, our successive refinements of the functional view also
reflects the addition of new functions.

The Functional View obtained after the functional decomposition of the Theatre-at-Home DMApp
platform is illustrated in Error! Reference source not found.Error! Reference source not found..

D2.6 - Distributed Media Application Platform:
Public Software Release

Page 68 (of 69) © 2-IMMERSE Consortium 2018

Figure 11: Functional View after first iteration

WebSocket Service

Named groups Unicast

broadcast

Node identity
Nested groups

Node
Presence

Reliable
messaging

DMapp Activation

Device selection
Communal/
companion

configuration

DMapp
Registry

Node
rendez-vous

Bi-directional
Data Channel

App-2-App

Reconnections

DMApp Session
(Room)

Auth (AAA)

User identity mgt User role mgt

User auth.

Access Token and
scope mgt

App auth.

Node identity
Scope

enforcement

Arbitrary payloads
e.g. client-launch config

Shared State

Node Presence

Device
capabilities

Data
synchronisation

Client connection
state notification

Channels
for {user, app, group}

combinations

Client auth.
Diff.

updates

Web RTC

NAT
punch-through

ICE Candidates
exchange

P2P
connections

Data Relay

WebRTC RTP Session desc.
signalling

Bi-directional
P2P Data
Channel

DIAL

Service
advertisement
on local segment

Node presence

App
launch/stop

Auxiliary data
payload

Media Sync

Timeline
clock

abstraction

Correlation
Timestamps
Exchange
between
homes

Asynchrony
Reduction

Sync Controller
QoE-aware

Master node
selection

WallClock

TIme
synchronisation

Reference
Timing Source

Sync Error
Estimation

Multi-transport
UDP, WS,

WebRTC,QUIC

Onboarding

User
Enrolment

Device
Discovery

Capability
Discovery

Session
Discovery

Device
Association

Session
Creation

Multi-device authentication
access tokens

Client-API

DMApp init &
setup

DMApp C.
interface & base

impl.

Timeline
update

actuator

Layout update
actuator

Clock update
DMApp timeline

Clock creation &
synchronisation

DMApp
Component

Status Update

Device
Discovery
DIAL client

Local layout mgt

DMApp data
forwarding

Inter-device app2app,

data endpoints, to/via

layout service

Media playback

DMApp
Component RPC

Host platform
abstraction

Layout Orchestration

Context Mgt
Devices, constraints,

components

Layout Notification
Trigger

Layout
Computation

Timeline Orchestration

Component
Lifecycle Mgt

Init, start, stop, destroy

commands

Clock (TL)
Selection and
Coordination

Component
Status Update

Actuator

Timeline
Interpretation &

Exec.

Timeline Change
Mgt

dmappC lifecycle cmds

Timeline
Positioning

Component Status Update Fwd
to Editor

Bandwidth Orchestration

Bandwith Usage
Collection

MPEG SAND messages

Bandwidth
Allocation

Client priority levels

Allocation
Dissemination
ABR instructions

DMApp b/w
Computation
Trigger & GC

User

Device pairingUser Enrolment

Admin

Service Mgr API
client

Platform
Dashboard UI

Alerts Config

DMApp Production

Layout
Specification

Device Role:
communal/
companion

DMApp
Component

Registry

DMApp Timeline
Document
creation

DMApp
Component
Provisioning

HbbTV Emulation

DMApp Timeline
Document
creation

DVBCSS-Proxy

Device
Groups

ICE-candidate
exchange

Message
bus

DVB-CSS
WC, CII, TS

Content Store

Content
protection

Content access
over HTTP

Authentication

D2.6 - Distributed Media Application Platform:
Public Software Release

© 2-IMMERSE Consortium 2018 Page 69 (of 69)

Figure 12: Functional Model after first iteration (Theatre-at-Home DMApp)

These were functionally decomposed in the next step of the process to form the Functional View in
the first iteration.

