

© 2-IMMERSE Consortium 2018 Page 1 (of 99)

Directorate General for Communications Networks, Content and Technology

Innovation Action

ICT-687655

D2.4 - Distributed Media Application Platform and
Multi-Screen Experience Components:

Description of Second Release  

Due date of deliverable: 30 November 2017

Start date of project: 1 December 2015 Duration: 36 months

Lead contractor for this deliverable: Cisco

Version: 11 January 2018

Confidentiality status: Public

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 2 (of 99) © 2-IMMERSE Consortium 2018

Abstract

This document describes the second release of the 2-IMMERSE Distributed Media Application
Platform, Multi-Screen Experience Components and Production Tools that have been developed for
the project’s second service prototype, “Watching MotoGP at Home”. It provides an illustrated tour
of the project’s technical achievements to date, along with details of the current status of the
platform and components and key features developed beyond those described in deliverables D2.1
(1), D2.2 (2) and D2.3 (3).

The description of the second release was originally defined as two separate written reports: D2.4
(Distributed Media Application Platform: Description of Second Release) and D5.2 (Multi-Screen
Experience Components: Description of Second Release). To make the content easier to read and
navigate, the complete description is now provided in this document, D2.4. Deliverable D5.2 now
contains a series of videos which show the 2-IMMERSE Platform, Components and Production Tools
in action.

Target audience

This is a public deliverable and could be read by anyone with an interest in the details of the
platform, service prototypes and production tools being developed by the 2-IMMERSE project. As
this is inherently technical in nature, we assume the audience is technically literate with a good grasp
of television and Internet technologies in particular.

Disclaimer

This document contains material, which is the copyright of certain 2-IMMERSE consortium parties,
and may not be reproduced or copied without permission. All 2-IMMERSE consortium parties have
agreed to full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

Neither the 2-IMMERSE consortium as a whole, nor a certain party of the 2-IMMERSE consortium
warrant that the information contained in this document is capable of use, or that use of the
information is free from risk, and accept no liability for loss or damage suffered by any person using
this information.

This document does not represent the opinion of the European Community, and the European
Community is not responsible for any use that might be made of its content.

Impressum

Full project title: 2-IMMERSE

Title of the workpackage: WP2 Distributed Media Application Platform

Document title: D2.4 Distributed Media Application Platform and Multi-Screen Experience
Components: Description of Second Release

Editors: James Walker (Cisco) and Pablo Cesar (CWI)

Workpackage Leader: James Walker, Cisco

Technical Project Leader: Mark Lomas, BBC

Project Co-ordinator: Helene Waters, BBC

This project is co-funded by the European Union through the Horizon 2020 programme.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 3 (of 99)

Executive Summary
The second release of the 2-IMMERSE Distributed Media Application Platform, Multi-Screen
Experience Components is based on a practical implementation of the system architecture defined in
project deliverable D2.1 (1), and the platform component interfaces defined in project deliverable
D2.2 (2).

The second trial to be undertaken by the 2-IMMERSE project is based on the “Watching MotoGP at
Home” service prototype. Technical development has therefore been focused on extending the first
release platform to address the prioritised requirements of this prototype, as expressed in
deliverable D4.4 (4) (5). As with the first release, it is important to note that the majority of the
platform elements, multi-screen experience components and production tools created for this
second release will be enhanced and used again for subsequent trials.

The following summarises the key technical achievements of the second release:

 Extension of first release platform, to include new services and extend existing services to deliver
functionality required by the MotoGP service prototype. New services include:

o Auth and Auth-Admin Services – supporting user identity management and
authentication.

o Data Playback Service – supporting generic methods for the capture, transformation and
distribution of production-related non-audio/video data streams.

o Bandwidth Orchestration Service – supporting monitoring and management of
bandwidth consumed by streaming media components, in accordance with MPEG’s
Server And Network Assisted DASH (SAND).

o Editor Service – supports editing operations to timeline documents via authoring front-
end applications, and interaction with the rest of the 2-IMMERSE platform.

 Migration of the service platform from a private cloud environment to Amazon Web Services
(AWS) and then subsequently migration from the Mantl container platform to Rancher.

 Development of Linux-based HbbTV2.0 Emulator firmware to run on Intel NUC devices to
support service prototypes. Key features include:

o Onboarding (supporting user network configuration, sign-in, device pairing, experience
discovery and experience launch)

o Integrated Wi-Fi router/access point

o HbbTV2.0 services (App2App server, DVB-CSS server and DIAL server)

o Web Kiosk

 Client API developments to support a DMApp launch configuration document, improve
robustness, integration with production tools, bandwidth orchestration, Google analytics, and,
improvements to the DMApp component interface.

 Authoring and development of the MotoGP service prototype DMApp and its constituent
elements: timeline, layout, HTML and CSS documents, several DMApp components with a focus
on data-driven animated graphics, and media asset preparation.

 Production tool development with a focus on the real-time triggering required for the MotoGP
scenario, which now is a working prototype integrated with the 2-IMMERSE platform.

As the second instance of a working platform for the delivery of an interactive, object-based multi-
screen experience, this Second Release forms the foundation for the remaining prototypes which will
be developed and taken to trial in the final year of the project.

Note: The description of the second release was originally defined as two separate written reports:
D2.4 (Distributed Media Application Platform: Description of Second Release), and D5.2 (Multi-Screen

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 4 (of 99) © 2-IMMERSE Consortium 2018

Experience Components: Description of Second Release). To make the content easier to read and
navigate, the complete description is now provided in this document, D2.4. Deliverable D5.2 now
contains a series of videos which show the 2-IMMERSE Platform, Components and Production Tools in
action.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 5 (of 99)

List of Authors
Mark Lomas – BBC

Rajiv Ramdhany - BBC

Ian Kegel – BT

Jonathan Rennison - BT

James Walker - Cisco (co-editor)

Tal Maoz - Cisco

Pablo Cesar – IRT (co-editor)

Jack Jansen – CWI

Thomas Röggla - CWI

Fons Kuijk – CWI

Michael Probst – IRT

Reviewers
Ian Kegel – BT

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 6 (of 99) © 2-IMMERSE Consortium 2018

Table of contents

Executive Summary .. 3

List of Authors .. 5

Reviewers .. 5

Table of contents ... 6

Glossary of terms ... 9

1 Introduction.. 10

2 Requirements ... 11

3 Snapshot of the platform and components .. 19

3.1 2-IMMERSE Service Platform .. 19

3.2 2-IMMERSE Code Repository (GitLab) ... 20

3.3 Container Platform Services .. 21

3.4 Backend Services ... 23

3.5 HbbTV2.0 Emulator ... 23

3.6 TV and Companion Client applications for the MotoGP at Home trial 24

4 Platform Infrastructure ... 29

4.1 Mantl Platform Developments .. 29

4.2 Rancher Platform ... 30

4.3 Origin Server .. 33

4.4 CI/CD and Docker Registry .. 33

5 Platform Services .. 34

5.1 Timeline ... 34

5.2 Layout .. 35

5.3 Websocket ... 36

5.4 Shared State .. 36

5.5 Logging and Monitoring .. 36

5.6 WallClock Service... 40

5.7 Synchronisation Service (Inter-Home Sync) .. 40

5.8 Authentication ... 40

5.9 API gateway ... 41

5.10 Data Playback .. 41

5.11 Bandwidth Orchestration Service .. 44

5.12 HLS Proxy ... 48

5.13 Docker-Hive ... 48

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 7 (of 99)

5.14 Server-Based Composition .. 49

6 Client Application Stack ... 50

6.1 Overview .. 50

6.2 MotoGP DMApp Implementation ... 51

6.3 Client API ... 54

6.4 HbbTV2.0 Emulator ... 56

6.5 Companion Devices ... 57

6.6 HbbTV showcases, tools and software libraries .. 58

7 Multi-Screen Experience (DMApp) Components... 59

7.1 DMApp Components available in the Second Release ... 59

8 Production Tools ... 65

8.1 Architecture and Workflow ... 66

8.2 Document Format ... 67

8.3 Frontend .. 67

8.4 Backend ... 70

9 Conclusion .. 72

10 References .. 73

 Synchronisation Service (Inter-Home Sync) ... 76 Annex A

A.1 Limitations of current synchronisation approaches in 2-IMMERSE 76

A.2 Proposed Synchronisation Model ... 76

A.3 Architectural Overview .. 78

A.4 Implementation ... 80

 HbbTV2.0 Emulator Components .. 81 Annex B

B.1 Operating System .. 81

B.2 HbbTV2.0 Emulator Services ... 81

B.3 On-boarding System .. 81

B.4 Admin Portal .. 82

B.5 On-boarding Steps ... 82

B.6 Network connectivity management layer ... 88

B.7 Integrated Wi-Fi router/gateway and access point .. 89

B.8 Captive Portal .. 90

B.9 Web Kiosk Service ... 92

B.10 Creating an SSH tunnel for remotely debugging Chromium ... 94

B.11 Web Server .. 94

B.12 4K/UHD TV Support ... 94

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 8 (of 99) © 2-IMMERSE Consortium 2018

 HbbTV showcases, tools and software libraries ... 96 Annex C

C.1 Showcase applications .. 96

C.2 HbbTV client libraries .. 96

C.3 Companion screen libraries for Android ... 97

C.4 Companion screen libraries for WinJS UWP.. 97

C.5 MPEG TEMI Timeline Inserter ... 97

C.6 Material resolution service .. 99

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 9 (of 99)

Glossary of terms

Term/acronym Definition/explanation

Experience 2-IMMERSE is developing four innovative service prototypes of multi-screen entertainment
‘experiences’. Unlike existing services, the content layout and compositions are orchestrated
across the available screens and an object based broadcasting approach is used for efficient
content distribution.

Distributed Media
Application
(DMApp)

2-IMMERSE multi-screen entertainment experiences are composed of many applications
configured to work together to deliver the look and feel of a single application. 2-IMMERSE calls
this collection a Distributed Media Application, or DMApp.

Distributed Media
Application
(DMApp)
Component

In 2-IMMERSE, re-usable components are assembled within a Distributed Media Application
(DMApp) to create coherent multi-screen experiences.

CI/CD Continuous Integration and Continuous Delivery

Context 2-IMMERSE defines a ‘context’ as one or more connected devices collaborating together to
present a media experience. Each context has a ‘contextID’ unique to its session. There can be
many contexts on a single LAN (e.g. a home network), but a device can only be a member of one
context at a time. Devices belonging to the same context must be able to discover each other
using the DIAL protocol. Devices can join or leave a context at any time.

IPTV - Internet
Protocol television

Internet Protocol television (IPTV) is the delivery of television content using signals based on the
logical Internet protocol (IP), rather than through traditional terrestrial, satellite signal, and cable
television formats. IPTV is important to this project as it is IPTV delivery that enables the OBB
(object based broadcasting) approach to content delivery.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 10 (of 99) © 2-IMMERSE Consortium 2018

1 Introduction

This document describes the second release of the 2-IMMERSE Distributed Media Application
Platform, Multi-Screen Experience Components and Production Tools that have been developed for
the project’s four service prototypes. The platform, components and tools will be continually
developed but at this stage they have been built to be sufficient for the first and second service
prototypes, “Watching Theatre at Home” (henceforth referred to as Theatre at Home), and
“Watching MotoGP at Home” (henceforth referred to as MotoGP).

The description of the second release was originally defined as two separate written reports: D2.4
(Distributed Media Application Platform: Description of Second Release), and D5.2 (Multi-Screen
Experience Components: Description of Second Release). To make the content easier to read and
navigate, the complete description is now provided in this document, D2.4. Deliverable D5.2 now
contains a series of videos which show the 2-IMMERSE Platform, Components and Production Tools
in action.

This second release is a practical implementation of the system architecture defined in project
deliverable D2.1, and the platform component interfaces defined in project deliverable D2.2 (2).
With the development focus on extending the first release of the platform (which supported the
Theatre at Home service prototype), to cover the requirements from the MotoGP service prototype,
platform development has been focused on the infrastructure, services and client application to
support this second service prototype. Similarly, the development of Production Tools and Multi-
Screen Experience Components has been prioritised according to MotoGP requirements. The
deliverable is structured as follows:

 Introduction - introduces the second release of the Distributed Media Application Platform,
and explains how the rest of the deliverable is structured.

 Requirements – A summary of the high level technical requirements for the platform,
DMApp and components.

 Snapshot of the platform and components – provides a brief visual overview of the second
release and the platform architecture implemented to date.

 Platform Infrastructure – describes the infrastructure deployed to support the 2-IMMERSE
service platform.

 Platform Services – describes the core platform services developed and deployed to date and
their current status.

 Client Application – describes the client application stack developed to date and its current
status.

 Multi-Screen Experience Components – describes the Multi-Screen Experience Components
that have been developed for the MotoGP service prototype.

 Production Tools – describes the Production Tools developed to support the authoring of the
MotoGP service prototype.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 11 (of 99)

2 Requirements

As the user experience for the MotoGP service prototype was defined, a set of high-level technical
requirements for the platform and client application were identified. In some cases, these were
clearly new requirements for existing services in the platform architecture or for the re-use of

existing DMApp Components at the client, and in other cases they suggested the definition of a
service or set of services, new functionality in the Client API or new DMApp Components.

Table 1 below lists the set of high-level technical requirements for the platform and DMApp as user
stories.

Scope Reference User Story

Layout MGP001 As a producer of the experience, I want to be able to precisely
define the size and position of graphical components
presented overlaid over the main video component.

MPG002 As a producer of the experience, I want to be able to control
placement of a component within a device or device region.

MPG003 As a producer of the experience, I want to be able to author
the component layout to adapt to the physical dimensions of
the display device, with either components growing to take
advantage of extra space, or allowing the introduction of
additional components in the extra space on a larger device
(i.e. to be able to capitalise on available space using a form of
responsive presentation)

MPG004 As a consumer of the experience, I want to be able to migrate
a component from a personal device (companion) to a
communal device (TV)

Timeline MPG005 As a consumer of the experience, I want to be able to scrub
back through the experience timeline, and all of the
presentation will be synchronised to the timeline (available
components, layout, component content etc.). This scrubbing
would likely be to bookmarks (producer or user created – see
MGP006)

MGP006 As a producer of the experience, I want to be able to author
‘bookmark events’ that are available to all consumers of the
experience with minimal delay.

Authentication/user
management

MPG007 As a consumer of the experience, I would like to be able to
persist my experience preferences (e.g. experience level).

MGP008 As a trial manager, I would like to be able to access and
analyse consumer preferences persisted in the course of a
trial.

MGP009 As a trial manager, I want to be able to create a user profile
and credentials for each participating triallist.

Data Playback MGP010 As a consumer of the experience, all live data feeds that are
part of the experience (for example driving data-driven
components, or being used to drive presentation decisions)
should be captured and made available on a time-shifted basis

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 12 (of 99) © 2-IMMERSE Consortium 2018

Scope Reference User Story

to make an ‘as-live’ experience as close as possible to the live
experience.

Participation app
backend

MPG011 As a producer of the experience, I would like to be able to use
a back-end service to manage collation and aggregation of
viewer rating and voting interaction during the experience.

DMApp MPG012 As a producer of the experience, I want to be able to author
the experience to support multiple experience levels, e.g.
expert / fan / novice

MPG013 As a producer of the experience, I want the TV component
experience level (Xp) to be presented according to the
following rules:

Single user – TV Xp set same as CS

Multiple users same Xp - TV Xp set same as CS

Multiple users different Xp - TV set to ‘standard’

DMApp
Components

MPG014 As a producer of the experience, I want to be able to author a
series of DMApp components, each containing one or more
graphics objects that support animation triggers (e.g. Race Info
/ Leader Board / Timing / Info Panel)

MPG026 As a producer of the experience I want to use be able to
export animation assets from Adobe Animate into animation
components.

MPG017 As a producer of the experience I would like to make 360
video available as part of the experience

MGP018 As a consumer of the experience, I would like to be able to
select the 360 PoV from my companion device

MGP019 As a producer of the experience, I would like Interactive
version of graphics components to be available on the
Companion device i.e. Rider, team profiles, tyres, weather,
track, rules, bike, tech

MGP020 As a producer of the experience, I would like to prompt users
to participate in quiz, play-a-long, betting etc.

MGP021 As a consumer of the experience, I would like to be able to
control:

Options to show / hide TV graphics

Selection of 3 x scaling / layout options (i.e. effective TV
dimensions)

Selection of 3 x experience level options (i.e. expert / fan /
novice)

Favourite rider / team

What video is displayed on the TV picture-in-picture when
available

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 13 (of 99)

Scope Reference User Story

MGP022 As a consumer of the experience, I would like to be able to
control companion presentation of:

video feeds

User selectable layouts

Content within each layout slot

User bookmark creation

Participation prompts? (quiz, play-a-long, bet etc.)

Non Functional MGP023 As consumers of the experience in the same household
(context), we will use a single TV device, which is available
throughout the experience.

 MGP024 As consumers of the experience in the same household
(context), we will use multiple companion devices

 MGP025 As a trial manager, I expect to conduct trial session with 4-8
households participating concurrently in an as-live ‘broadcast’
with an overall participation of 40-80 households.

Table 1 – MotoGP High Level Technical Requirements

Early in the development phase, the project team worked closely together to refine these high-level
requirements and create a set of prioritised User Experience Key Capabilities for the MotoGP service
prototype, which were subsequently listed in D3.3 (6) Section 3.2.7, with Section 3.4 of the same
document providing further details of these capabilities.

When the majority of the detailed design work for MotoGP User Experience had been finished and
key enabling work within the platform was well under way, technical delivery was managed through
a sequence of technical development milestones. Each milestone represented the completion of a
new feature, and its description was used during regular acceptance testing of client and platform
functionality. The description included the specifications of the TV Emulator, Companion Device,
network environment and analytics requirements for each milestone. In addition, once a feature was
implemented, a simple ‘technical sample’ DMApp was often developed to show the feature working
in isolation prior to integration within the MotoGP DMApp. As would be expected, a degree of
iterative development took place as details of the DMApp design were refined, and so the milestone
list was updated accordingly.

Table 2 below shows a simplified version of the milestone list at the beginning of the MotoGP trial,
indicating the date on which each of the milestones were signed off and the link back to the
applicable user story references from Table 1. It also indicates 5 milestones which were deprioritised
to enable timely launch of the trial.

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

1 Live race video and leaderboard on TV

On launching the MotoGP DMApp on the TV
Emulator, the main live race video should be
shown full screen for duration of the timeline, with
the MotoGP leaderboard overlaid on the video.

Mac Mini

(Laertes build)

26th July MGP014

MGP015

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 14 (of 99) © 2-IMMERSE Consortium 2018

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

The leaderboard is populated from a file.

2 Add Picture-in-Picture videos

PiP videos are shown overlaid on the main live
race video, each framed with appropriate graphics
and text.

Mac Mini

(Laertes build)

26th July MGP016

3 Add Companion View Panel

On launching the MotoGP DMApp on the TV
Emulator and each Companion, a Viewport Panel
is available on the companion. This panel:

 lists the alternative video feeds that are
available as the experience progresses

 allows the user to toggle presentation of each
available alternative video feed on the
companion and on the TV Emulator. In this
first instance, feeds will be presented
simultaneously on both displays.

When the maximum number of displayable videos
has been reached, the user will need to deselect a
video before a new one can be shown.

Mac Mini

(Laertes build)

4th August MGP022

MGP004

MGP003

4 Add Companion Leaderboard Panel

On launching the MotoGP DMApp on the TV
Emulator and each Companion, a Leaderboard
Panel is available on the companion. This panel
should support:

 Tapping on a rider to show their 'card'

 Swiping on the card to switch card views
(Profile <-> Video <-> Data)

Additionally, it should be possible to select
between the Viewport and Leaderboard Panels.

Mac Mini

(Laertes build)

1st September MGP019

5 Add Companion Menu

On launching the MotoGP DMApp on the TV
Emulator and each Companion, the menu is
available on the companion. The menu should be
'complete' as per the wireframe design (in terms
of the tree of options), but not all of the menu
options will be implemented. At this stage the
menu should support:

 audio volume

 user profile option selection (complete but
not all functional)

Mac Mini

(Laertes build)

1st September MGP021

6 Add Companion Events Panel

On launching the MotoGP DMApp on the TV
Emulator and each Companion, an Events Panel is
available on the companion. At this stage, the
panel displays a static list of events with no
interaction options.

Mac Mini

(Laertes build)

1st September MGP005

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 15 (of 99)

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

7 Add Instrumentation to Companion
Panels

While the MotoGP DMApp on the TV Emulator
and each Companion is running during the live
race stage, one or more of the available Viewport
Panels will be configured to send event data to
Google Analytics to measure specific user
interaction behaviours.

Intel NUC

 (15/09 build)

21st
September

MGP008

8 Drive Leaderboard from Data Playback
Service

On launching the MotoGP DMApp on the TV
Emulator and each Companion, the leaderboard
components on both TV and companion devices
should update their presentation synchronised to
the race videos, using the Data Playback Service.

Intel NUC

(15/09 build)

3rd October MGP010

9 Add 360 Video Components

On launching the MotoGP DMApp on the TV
Emulator and each Companion, a Viewport Panel
is available on the companion. On the tablet, this
panel should additionally support presentation
and selection of 360 video feeds - this will result in
presentation as both a PiP video on TV and locally
on the tablet. The tablet presentation should
support panning around the 360 video feeds both
on tablet and on TV.

Intel NUC

(15/09 build)

6th October MGP017

MGP018

10 Add Companion Stats Component (with
Data Playback Service)

On launching the MotoGP DMApp on the TV
Emulator and each Companion, the Viewport
Panel should have an option for a 'Lap and circuit
times' component for presentation on the
companion only. This should present lap and
circuit times as defined in the wireframes,
including the fastest laps for the user’s favourite
rider. This component should update presentation
synchronised with the race video material, using
the Data Playback Service.

Intel NUC

(15/09 build)

6th October MGP014

MGP010

11 Add first GFX Component with entry and
exit animations

While the MotoGP DMApp on the TV Emulator
and each Companion is running during the live
race stage, the “Battle For…” GFX component is
displayed on the TV Emulator at a time authored
within the timeline document.

The component presents entry and exit
animations.

Intel NUC

(15/09 build)

6th October MGP014

12 Add Experience level personalisation

On launching the MotoGP DMApp on the TV

Intel NUC

(15/09 build)

6th October MGP012

MGP013

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 16 (of 99) © 2-IMMERSE Consortium 2018

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

Emulator and each Companion, component
presentations should update to reflect the
experience level (novice, standard, expert) as
selected through the appropriate companion
menu option(s).

13 Add multi-channel audio selection

On launching the MotoGP DMApp on the TV
Emulator and each Companion, presentation of
the TV audio should respond appropriately when
the menu options to change audio presentation
are selected.

Intel NUC

(23/10 build)

27th October

14 Add broadcaster control of layout during
live race stage (replays)

While the MotoGP DMApp on the TV Emulator
and each Companion is running during the live
race stage, the layout of each can be changed at
an arbitrary point in time determined during live
production in order to show a replay of a specific
event (which will subsequently appear in the
Companion Events Panel). After the replay, each
user’s personalised presentation is restored.

Intel NUC

(23/10 build)

27th October

15 Test with connection drops and
restricted bandwidth

All MotoGP DMApp functionality available so far
on TV Emulator and Companions will be tested
while the network connection (wired or wireless)
is dropped and reconnected, and bandwidth is
restricted in order to identify performance and
recovery issues.

Intel NUC

(23/10 build)

1st November
(initial tests)

16 Add On-boarding (launching TV DMApp)

An on-boarding launch flow is available, in which
the Companion is used to launch the MotoGP
DMApp on the TV Emulator.

Intel NUC

(10/11 build)

15th November

17 Add Inside MotoGP chapter

On launching the MotoGP DMApp on the TV
Emulator and each Companion, a set of Inside
MotoGP video on demand content will be
available in the companion app.

Intel NUC

(10/11 build)

15th November

18 Add Responsive TV Layout

On launching the MotoGP DMApp on the TV
Emulator and each Companion, layout of the
overlay components on the TV should respond
appropriately when the menu options on the
companion to change TV presentation scale are
selected.

Intel NUC

(10/11 build)

22nd
November

MGP003

19 Add Notifications

While the MotoGP DMApp on the TV Emulator

Intel NUC 24th November MGP020

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 17 (of 99)

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

and each Companion is running during any stage,
notifications are shown on both the Companion
(as a pop-up component) and the TV Emulator (as
an additional graphic) at a time authored within
the timeline document.

(23/11 build)

20 Add instrumentation to all components

All user interactions and related events within the
MotoGP DMApp on the TV Emulator and each
Companion are instrumented in accordance with
trial requirements and centralised data capture
and analytics are available.

Intel NUC

(23/11 build)

1st December MGP008

21 Add Race Review Highlights chapter

On launching the MotoGP DMApp on the TV
Emulator and each Companion, and reaching the
end of the live race chapter of the timeline, there
should be a race review chapter that follows. This
will present a set of highlight race events in
sequence (as reflected in the Companion Events
Panel). For each event, a set of components
(graphics, additional video etc.) will be presented
on both TV and Companion. On selecting an event,
the presentation should jump to that point in the
race review highlights, and play through to the end
of the chapter.

Intel NUC

(23/11 build)

8th December

22 Add interactive playback to Companion
Events Panel

On launching the MotoGP DMApp on the TV
Emulator and each Companion, an Events Panel is
available on the companion. This panel should
support the following interaction:

 As the timeline progresses, events will
populate in the event list, driven by the Data
Playback Service.

 On selecting one of these events, the layout
of the TV Emulator and each Companion can
be changed in order to show a replay of that
event. After the replay, each user’s
personalised presentation is restored.

Intel NUC

(23/11 build)

18th December MGP005

23 Complete all data-driven GFX
Components

While the MotoGP DMApp on the TV Emulator
and each Companion is running during the live
race stage, all GFX components are displayed on
the TV Emulator at a time authored within the
timeline document, where appropriate presenting
data provided by the Data Playback Service. The
components also present entry and exit
animations.

Intel NUC

(23/11 build)

18th December MGP014

MGP010

A Companion app running on iOS

All companion functionality will be demonstrated

N/A Not yet
completed

In test at the
time of writing.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 18 (of 99) © 2-IMMERSE Consortium 2018

 Milestone and Description TV Emulator
used

Date signed
off

Reference and
Comments

running on an iPad and iPhone. This will be
compared with the experience on an Android
Tablet and Android Phone to identify performance
issues.

B Add MotoGP Tutorial

On launching the MotoGP DMApp on the TV
Emulator and each Companion, a tutorial is shown
explaining the features of the MotoGP experience.

 Superseded Tutorial
provided
through VOD
clips during
Inside MotoGP.

C Add sign-in and user profile option
selection

Following the on-boarding launch flow, the
MotoGP DMApp shows user sign-in and profile
options selection. With sign-in enabled, user
preferences (eg. experience level) will be persisted
to and retrieved from the Auth Service.

 Partially
completed

Sign-in
implemented.
Nature of trial
does not
require
persistent user
preferences.

D Inside MotoGP layout driven by
experience level

On launching the MotoGP DMApp on the TV
Emulator and each Companion, the Inside MotoGP
components available and laid out on the
companion will differ to reflect the user's
experience level as defined in their user profile.

 Superseded No longer
relevant as user
preferences not
available at this
stage.

E Bandwidth Management Service
controls video QoE

On launching the MotoGP DMApp on the TV
Emulator and each Companion, and then selecting
multiple video streams to be presented on both
the TV (live race and PiP) and Companions, the
experience is adapted by the Bandwidth
Management Service to accommodate changes in
available bandwidth. This may involve reducing
the quality of less important streams, or removing
them from TV or companion entirely.

 Not yet
completed

In test at the
time of writing.

Table 2 – Simplified List of MotoGP Development Milestones

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 19 (of 99)

3 Snapshot of the platform and components

This section provides a visual overview of selected aspects of the second release of the 2-IMMERSE
platform and components. It is intended to give the reader an appreciation of the scope of what has
been achieved so far by means of diagrams and screen captures which hopefully help to place in
context the technical detail which follows.

3.1 2-IMMERSE Service Platform

The service platform architecture has been extended to support features for MotoGP as follows by
the integration of new services, and new capabilities added to existing services:

 New Services:
o Auth and Auth-Admin Services – supporting user identity management and

authentication
o Data Playback Service – supporting generic methods for the capture, transformation

and distribution of production-related non-audio/video data streams
o Bandwidth Orchestration Service – supporting monitoring and management of

bandwidth consumed by streaming media components, in accordance with MPEG’s
Server and Network Assisted DASH (SAND) (5)

o Editor Service – supports editing operations to timeline documents via authoring
front-end applications, and interaction with the rest of the 2-IMMERSE platform.

 Extended services:
o Timeline Service – significant new features include timeline events, parameter

updates, temporal positioning and symbolic execution
o Layout Service – significant new features include support for anchor constraints,

specification of component constraints in physical units, a constraints management
API, an upgraded transaction API that supports a many-to-one component-to-
constraint model, and a migration to MongoDB as the data persistence engine.

Comprehensive details of the scope and implementation of these new and extended services are
provided in Section 5 of this document.

The set of services that are integrated and deployed under the second release of the platform are
shown below in Figure 1. For clarity, this does not show the underlying infrastructure services, or the
common operational support services, which are described in Section 4 of this document.

Figure 1 - Service Platform

Wallclock

Consul

Websocket

Lobby/Call

Shared	
State

MongoDB

Logging

Timeline

Auth

RegistratorRedirect

Auth	Admin
Bandwidth	

Orch

influxdb

Editor

Dynamodb
iot pusher

MotoGP	
Simulator

Req Reply	
data	prov

Layout

Legend

Externally	Accessible

Internal

Infrastructure

Data	Persistence

REST

Websocket

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 20 (of 99) © 2-IMMERSE Consortium 2018

These services have been migrated to run under a new container platform, Rancher, as described
below in Section 3.3

3.2 2-IMMERSE Code Repository (GitLab)

The project partners continue to use a set of private repositories hosted on a GitLab server by IRT to
manage development of the platform services, client application and DMApp Components.

We have extended our use of the GitLab feature set to support our CI/CD process, including
automated service build and deployment to the edge platform instance, and use of container

registries. Figure 2 below shows an example of a GitLab project Container Registry, and

Figure 3 below shows an example of a GitLab project CI/CD Pipeline.

Figure 2 - GitLab Container Registry

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 21 (of 99)

Figure 3 - GitLab CI/CD Pipelines

More details of the CI/CD process are provided in Section 4.4 of this document.

Access to the GitLab repositories can be made available on request.

3.3 Container Platform Services

During the last year, we have migrated the 2-IMMERSE Service Platform from Cisco’s OpenStack-
based private cloud platform to AWS public cloud. We have then gone on to migrate from the
previous container platform, Mantl, to a new platform, Rancher (still on AWS). The key driver in the
decision to migrate from Mantl to Rancher was a lack of ongoing commercial sponsorship of the
Mantl project. Rancher provides us with an open-source platform with similar high-level goals to that
of Mantl, but with a critical mass of users and a strong roadmap. Further rationale behind these
migrations is described in Section 4 below.

We have been able migrate our 2-IMMERSE services to this new infrastructure in a relatively
straightforward process (and with minimal changes to our services), and are benefitting from the
new container platform. These benefits include: more efficient resource utilisation, the ability to
much more simply deploy new platform instances and scale resources accordingly, improved stability
and a better integrated operational UX.

Figure 4 below shows the Rancher UX displaying an overview and status of the 2-IMMERSE platform
services in our production environment. Figure 5 below shows the Rancher 2-IMMERSE service
catalog, enabling us to ‘one-click’ deploy an instance of the service platform.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 22 (of 99) © 2-IMMERSE Consortium 2018

Figure 4 - Rancher Production Platform UX

Figure 5 - Rancher 2-IMMERSE Catalog

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 23 (of 99)

3.4 Backend Services

We continue to make use of Elastic Stack (Logstash, Elasticsearch, Kibana) for the aggregation,
processing and analysis of service and client logs. In migrating to Rancher, we have been able to
upgrade to the latest versions of these services and take advantage of the new features that they
provide.

In addition, we have a number of other supporting services; either to help monitor and operate the
platform, or services for the project team to use.

The operational support services include:

 Prometheus

 Tyk

 GitLab Multi-runner

 Sensu

 Docker-Hive

 Websocket-tester

 Layout Renderer

 Dashboard

The project services include

 API-designer

 Mattermost

These services are detailed in Section 4.2 of this document.

3.5 HbbTV2.0 Emulator

For the first release, we adopted a Mac Mini running MacOS X, with local services and Chrome
running in Kiosk Mode. Whilst this proved sufficient for the Theatre at Home trials, it was recognised
we needed to support the user journey that precedes and follows the actual experience itself, which
we generally refer to as ‘onboarding’. The requirements for onboarding are detailed in Section 2 of
project deliverable D3.3.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 24 (of 99) © 2-IMMERSE Consortium 2018

Figure 6 - HbbTV2.0 Emulator firmware showing onboarding screens

For the second release, we have developed a dedicated firmware, built on top of Ubuntu Linux, that
supports a number of features including onboarding. In switching to a Linux-based firmware, we are
able to more easily build and distribute firmware releases than we were able to for the Mac Mini.
Figure 6 shows the HbbTV2.0 emulator firmware displaying the onboarding screens.

For the MotoGP trials the firmware has been deployed on Intel NUC small form factor PCs.

Comprehensive details of the HbbTV2.0 Emulator are provided in Section 5.4 of this document.

3.6 TV and Companion Client applications for MotoGP at Home trial

The MotoGP Service Prototype is described in detail in Section 5.3 of project deliverable D4.4 (4). The
description that follows is an abridged version of this description.

The experience has been built to accompany BT Sport’s presentation of a MotoGP race. That
coverage has a timeline that covers three phases, the pre-race build up, the race itself and the post-
race analysis. The features available to the user in our multi-screen experience vary in each of these
phases. Within the experience these three phases are known as ‘Inside MotoGP’, ‘Watch Live’ and
‘Race Review’.

In the following sections the features available to the user in each section are described; readers are
again alerted to the video of the experience that may also help in their understanding (7)

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 25 (of 99)

3.6.1 Inside MotoGP

Alongside the commentary-led exposition prior to the race, access is provided to a variety of optional
short-form video on demand (VoD) clips to enhance the user experience. These include GUIDE
videos (that explain how to use the experience), CATCH-UP videos that bring viewers up to speed
with recent MotoGP events and TECHNICAL videos that help viewers understand some of the more
technical aspects of the sport.

By way of example, Figure 7 shows content from the Technical section, in this case providing some
insight to the aerodynamics of bikes.

Figure 7 - Showing how, during the Inside MotoGP section that precedes the race, additional
content is shown on the phone or the tablet.

3.6.2 Watch Live

The set of options available within the ‘Watch Live’ section comprises:

 Leader board (An interactive leader board enabling you to swipe to access different details about
each rider)

 Events (A growing list of events that can be viewed as replays on the TV and tablet, often with an
event consisting of multiple views presented synchonised)

 View (A list of video feeds and data components that can be selected for presentation on the
companion device)

 Menu (A means of affecting the way the experience is presented across the screens)
o TV graphics Size
o TV presentation
o TV audio balance
o Your favourite rider

Once videos have been selected for display on the companion device from the View panel, there is a
casting option that allows users to cast the video onto the main screen. This uses the familiar casting
icons as shown in Figure 8

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 26 (of 99) © 2-IMMERSE Consortium 2018

Figure 8 - Showing how videos on the tablet can be cast to the main TV screen as a picture-in-
picture (PiP) top row and showing how the tablet can be used to remove picture-in-picture

selections from the main screen (bottom row).

Figure 9 shows the interactive leader board component as presented on the tablet showing how
selection expands the leader board entry and swiping reveals the bike cam (if available), split times
and tyre set-up.

Figure 9 - The interactive leader board on the tablet, showing how selecting expands the leader
board entry and swiping reveals the bike cam (if available), split times and tyre set-up

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 27 (of 99)

The presentation of media objects can be adapted to suit the context of the viewer through the
Menu options, where context may include the size of the TV or whether the viewer has declared
themselves an expert or a novice as shown in Figure 10.

Figure 10 - This figure shows how, using the object based broadcasting approach, the graphics can
be adapted to affect the size of the graphics to better suit different TV sizes (top row) or to provide

more or less information on the leader-board to suit experts or novice viewers of the sport
(bottom row)

Figure 11 - Showing the events menu (on both the tablet and phone). Selecting an event during
the Watch live stage initiates a replay of the event on both the TV (see Figure 12) and the

companion device.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 28 (of 99) © 2-IMMERSE Consortium 2018

Selecting an event on the phone or tablet initiates a replay on the main TV screen (the Replay is also
shown on the tablet). The events list presentation for tablet and phone is shown in Figure 11. The
replay sequence on the TV and tablet is shown in Figure 12.

Figure 12 - The screen sequence for event replays on the Main TV (top row) and on the tablet
(bottom row). The replay is preceded, ad followed by a short screen wipe animation of the

MotoGP log to mirror the replays as used in the broadcast programme.

3.6.3 Race Review

Alongside the commentary-led post-match coverage presented on the TV, access is provided to a set
of optional VoD replays that can be selected by the user. These are a super-set of the replays that
were made available in the Watch Live section. These replays are only presented on the user’s
companion device but often consist of multiple views presented synchronised.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 29 (of 99)

4 Platform Infrastructure

This section of the deliverable describes the infrastructure deployed to support the 2-IMMERSE
service platform. (8)

4.1 Mantl Platform Developments

Toward the end of 2016, Cisco announced that the OpenStack-based private cloud platform in which
we had deployed the initial platform instance would be closing down at the end of March 2017.
Given this, we needed to redeploy the platform into an alternative cloud environment, and selected
Amazon Web Services (AWS), on the basis that it was supported by Mantl, and that AWS pricing was
competitive.

The basic deployment of a Mantl cluster using Terraform and Ansible (as done previously) worked
more or less as expected and we were able to get a basic cluster up and running fairly quickly.

One area where we did make a change was for the Origin Server; previously we had used a dedicated
virtual machine outside of the Mantl cluster to host and serve 2-IMMERSE DMApp assets. Given the
imposed transition, we felt it would be simpler and likely more robust to use AWS services directly to
support this feature and we switched to using AWS S3 and CloudFront to host the 2-IMMERSE
platform origin. This has proven to be a reliable solution.

In the period following initial deployment on Mantl on AWS, we made a series of changes to the
Mantl cluster to improve stability of the cluster and service platform:

 Hosted under a subdomain of 2immerse.eu

 EFS volume mounts for data where appropriate (e.g. Elasticsearch indices, Mattermost data)

 Scheduled clean-up scripts to prevent disks filling up

 Upgrades to more recent backwards-compatible package releases where possible (e.g.
Elasticearch, Kibana etc.)

 Switching API Gateway from Kong to Tyk (rationale provided below in Section 5.9)

 Deployed Sensu on all nodes for improved monitoring and alerts

 Implemented a platform health dashboard

In March 2017 Cisco announced that they would no longer be sponsoring the Mantl (8) (9)project,
and would turn over the Mantl-specific open source projects over to the open source community.

In practical terms this has meant that from that point on, there has been little active maintenance or
development of any of the Mantl-specific open source projects that are part of the overall Mantl
platform.

In the near term this hasn’t been particularly problematic, it has simply meant that we couldn’t rely
on anyone else to fix bugs or issues, that there would be no new features, and that as new versions
of software packages used in the Mantl platform were released, we could only adopt them if they
were backward compatible with existing versions (as we quickly found examples where this wasn’t
the case, e.g. moving from Elasticsearch v 2.x to 5.x).

A small community has rallied around the open source project; however, they have had little impact
on the project. It was also clear over time that within 2-IMMERSE:

 We simply couldn’t dedicate the resources to trying to take on this Mantl support burden
ourselves.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 30 (of 99) © 2-IMMERSE Consortium 2018

 We were spending increasing time managing the stability of the Mantl cluster for trials and
demos.

 We also noted that the resource management of the Mesos framework foundation of Mantl
was inflexible and inefficient, and we felt that more efficient options were likely to be
available. By way of example we found that:

o adding and removing Virtual Machines to an existing Mantl cluster was non-trivial.
o Resource allocation for services could only be done on a worst-case usage basis,

meaning often resources were reserved and effectively inaccessible to other services
that might want to use them.

Whilst the stated goals of the Mantl project were a good fit for 2-IMMERSE, the lack of effective
governance and resourcing of the project meant it was arguably not a viable solution in the long
term, and it became increasingly clear that we needed to find an alternative container platform that
would allow us to easily migrate the platform micro-services we had developed with a minimal
change in the infrastructure and services that they relied on.

In fact, the key choices we had made in adopting Mantl, i.e. Docker as a container runtime, Consul
for service discovery, Elastic Stack for logging and analytics are still valid with these still being popular
choices in cloud and container platforms. Finding an alternative platform based on these
technologies that allows us to deploy our existing services with minimal changes led us to investigate
Rancher.

4.2 Rancher Platform

At a high level, the goals of the Rancher platform are very similar to those of Mantl; that is, a
container management system with a portable layer of infrastructure services (that allow it to run in
a range of public and private cloud environments). Rancher is available as open source, but also on a
commercially-supported basis, and, significantly, it has a number of high-profile users in production.
Rancher includes a community-contributed catalogue of popular applications and services that can
be easily (in some cases ‘one-click’) deployed into a Rancher environment.

More information on Rancher can be found online (9)

Our Rancher cluster has been deployed as follows:

 Rancher management cluster (currently 3 x AWS t2.large instances)

We have set up four environments:

 Production (currently 3 x AWS t2.medium instances)

 Test (currently 1 x AWS t2.medium instances)

 Edge (currently 2 x AWS t2.medium instances)

 Ops (currently 2 x AWS m4.xlarge instances)

This compares favourably with the machines that were used to host the Mantl cluster: 8 x c4.xlarge
(workers), 3 x m3.medium (control), 1 x m3.medium (edge) instances (which were struggling to run
production, test and edge services).

Into the Production, Test and Edge environment we have deployed instances of the 2-IMMERSE
‘stack’, which can be 1-button deployed from the 2-IMMERSE Rancher catalogue. The catalogue
entries are templates based on Docker-compose files (which was advantageous for us since we had
been using Docker-compose for local platform testing). The service versions deployed on each of
these instances will however vary; Edge will run the “latest” tagged Docker image from the registry,
whereas Production and Test are configured to use specific release tags for each service. Our CI/CD
process will auto-deploy latest builds of services into Edge as they become available.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 31 (of 99)

The current set of services in the 2-IMMERSE stack is listed below in

Table 3:

Service Name Service Description

admin Web admin interface for auth service – see Section 5.8

auth User Identity Management and Authentication, content decryption key
distribution service – see Section 5.8

bandwidth-
orchestration

Streaming media component bandwidth management – see Section 5.11

consul Service Discovery (10)

data-playback-
dynamodb-to-iot-
pusher

Data Playback IoT Service push adapter – see Section 5.10

data-playback-
motogp-simulator

Data Playback MotoGP live event simulator – see Section 5.10

data-playback-
request-reply-data-
provider

Data Playback HTTP/S interface to storage – see Section 5.10

editor Timeline document editor backend – see Section 8.4

influxdb Time series database used by bandwidth-orchestration (11)

layout DMApp component layout and adaptation to devices – see Section 5.2

logging Client logging interface

mongodb Object Store (12)

redirect Service to redirect http to https

registrator Service registry bridge for Docker (13)

shared-state Shared component state propagation mechanism – see Section 5.4

timeline Temporal DMApp component orchestration – see Section 5.1

wallclock Time synchronisation service for clients and services – see Section 5.6

websocket Push message mechanism between service platform and clients, and
between services. Includes lobby and call service functions – see Section 5.3

Table 3 – Second Release 2-IMMERSE service set

Alongside the 2-IMMERSE stack, the following additional stacks are typically deployed into these
environments:

 Logspout (log routing for Docker containers) (14)

 Tyk (API Gateway) (15)

 Load Balancer (Traefik) (16)

 Prometheus (Metrics and alerting tool) (17)

 The standard Rancher infrastructure service set

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 32 (of 99) © 2-IMMERSE Consortium 2018

The Ops environment hosts a series of stacks which are either concerned with platform operations
and monitoring, or tools used by the project team. These include:

 Api-designer (Mulesoft RAML API Tool)

 GitLab-multi-runner (CI/CD runner) (18)

 Janitor (Docker image, container and volume clean up)

 Kibana (19)

 Letsencrypt (20)

 Logstash (21)

 Mattermost (messaging platform used by 2-IMMERSE technical team) (22)

 Renderer (layout rendering tool)

 Sensu (23) and Uchiwa (24) (Full stack monitoring + dashboards)

 Websocket-tester (websocket service test tool)

 Docker-Hive (scalable API testing)

We have some platform dependencies on AWS services (i.e. outside of the Rancher platform). These
include:

 Data Playback service is using a DynamoDB instance hosted directly in AWS.

 An AWS ElasticSearch service instance, although we are using that with the Logstash and
Kibana services in the Ops environment. This has proven more stable than the version
initially deployed in Rancher.

 S3 and CloudFront for the Origin Server

 EC2 for compute (i.e. Virtual Machines)

 Route53 for DNS

 EFS for persistent data volumes

To deploy the Rancher-based platform into a different cloud platform, or on bare metal servers,
these dependencies would need to be addressed.

The configuration of Rancher and its environments and stacks within AWS as described in this
Section is shown below in Figure 13.

Figure 13 - Platform Infrastructure

AWS

Rancher

GitLab

OpsEdge

Test

Prod

Elastic-SearchDynamoDBS3	+	
CloudFront

SCM

Container	
Registry

2Immerse	
Services

Logspout

Other	Stacks
Rancher	Infra	
Services

Tyk

GitLab	Multi	
Runner

Kibana

Logstash

Other	Stacks

Management	Cluster

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 33 (of 99)

4.3 Origin Server

As noted in Section 4.1, as part of the Mantl migration from Cisco’s private cloud infrastructure to
AWS, the origin server was implemented using AWS S3 and CloudFront to host the 2-IMMERSE
platform origin.

4.4 CI/CD and Docker Registry

In the Mantl platform deployed for the first platform release, we were using a Virtual Machine with
Jenkins installed to run our CI/CD builds (typically Docker builds) and to host a container registry for
built container images.

In migrating to AWS, we made a change to the CI/CD process so that the GitLab repository would use
a runner container itself deployed under Mantl to perform the builds triggered by repository
commits, and the GitLab container registry feature to host built container images. This meant we no
longer needed a machine dedicated to this task.

We moved to using multi-stage builds for some of the projects which simplified these build
processes. Some of the projects build updated service documentation as part of the CI/CD process
and publish this to the origin server.

In transitioning from Mantl to Rancher we followed this same pattern, with the GitLab multi-runner
container deployed in the Rancher Ops environment. Both the GitLab multi-runner (and in fact
GitLab itself) are available as community catalogue items in Rancher.

Rancher is configured to use webhook-triggered service upgrades on Edge so that the latest service
builds are automatically deployed. Test and Production continue to use manual upgrades of tagged
service versions.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 34 (of 99) © 2-IMMERSE Consortium 2018

5 Platform Services

5.1 Timeline

The Timeline service interprets the document that controls the temporal composition of all the
media items and components in a 2-IMMERSE multi-screen experience across all devices: the TV and
all the companion devices. Under control of the timeline document it sends commands to create,
start, stop and remove the individual components and media items at the right time.

Since the first release, the Timeline service has been enhanced in a number of areas. To cater for
companion devices going offline and coming online at will during the experience we have to ensure
that the right components are shown, and in the right state (for example, temporal position for
synchronised audio or video). To handle this, we have formalised the component lifecycle (init-start-
stop-destroy) and implemented this in the Timeline service (as well as in the Layout service and
clients).

To facilitate more reactive experiences, we have implemented functionality to allow the triggering of
sections of the timeline document based on user interaction through a timelineEvent mechanism.
This allows things such as pressing a button on a companion device to start a (possibly long)
sequence of events on the television. A repeat container has been implemented (in addition to the
parallel and sequential containers) to allow for such user interaction to happen multiple times. In
addition, the repeat container could be used for other repetitive functionality in the experience.

Another area of enhancements has been the addition of an update facility to change parameters or
layout aspects of active components under timeline control. This allows things like moving
components to a different place on the screen (or even another device) or changing things like audio
volume, or even media clip playback while keeping relative time position. Together with the
timelineEvent this allows for seamless adaptation of the experience on user interaction.

A number of facilities have been added to support the new production tools which have been
developed for the second release. A temporal positioning mechanism has been implemented that
allows moving the “play head” back and forth, like the slider on a video player. Because of the
structured nature of the timeline document this is non-trivial: the timeline service remembers the
current state of all components, then uses symbolic execution to determine the expected state of all
components after the moving of the play head and finally issues all the
init/start/stop/destroy/update commands needed to move the experience to the new temporal
position.

The symbolic execution mechanism is also used to allow insertion of new components into the
timeline, which is the basic mechanism that underlies the live editing of a document in the Live
Triggering Tool (see Section 7). For this release only insertion of components (or groups of
components in parallel and sequential containers) has been fully implemented, and only insertion in
the future or non-trivial: the timeline service Live Triggering Tool, insertion of components in the
past and removal of components will be implemented later (to facilitate preview play in the
preproduction tool).

Additionally, APIs have been added to allow the Authoring Tool backend to insert components and
use temporal positioning, and interfaces to report back current document state to the tool (so it
knows where it should insert new components during live triggering, and show visual feedback on
component activity).

Finally, there have been enhancements in the area of platform integration: better logging, better
support for containerisation and adaptations for the new platform infrastructure, modifications to
cater for new versions of the layout and other services.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 35 (of 99)

5.2 Layout

A number of significant feature changes have been made to the Layout service since the first release
(as described in D2.3), which comprise:

 A migration from JavaScript to Typescript. Typescript is a typed superset of JavaScript that
compiles to plain JavaScript. More information is available online: (25)

 A migration from Redis to MongoDB (12) as our data persistence engine (using Iridium Object
Document Mapper). We had written our own object mapper for Redis but as it got more
complex adopting an existing implementation was appropriate. We have seen no
performance penalty in moving to MongoDB.

 Support for anchor constraints, which allow the ‘anchoring’ of components to an edge or
corner of their target device / region.

 The specification of component constraint dimensions in physical units (i.e. inches), and of
the display device pixel density in dots per inch (dpi). This allows the service to support
responsive component presentation, i.e. that a component would be rendered at the same
nominal real-world size on devices of the same pixel resolution but with different physical
dimensions. This can be used with other components specified using pixel or percentage
dimensions.

 The addition of a REST API for constraint management, allowing the addition, change and
removal of constraint definitions for a running DMApp (for example by the Timeline service),
to enable a more dynamic approach to layout.

 An upgraded Transaction API to allow components to reference constraints by ID. This allows
a many-to-one component-to-constraint model. This means that multiple components can
share the same constraint definition, giving more flexibility, and potentially much less
repetition in layout constraint documents. It also enables rebinding of components to
constraints i.e. ‘on-the-fly’ switching between different constraint definitions for a
component, which gives us a much more dynamic layout capability, and which has been used
in the MotoGP DMApp to facilitate presentation of replays.

 Addition of a websocket push message for ComponentProperties, so that when properties
such component priority are changed, this information can propagate to other components
that may need to be aware (which was the case for user control of PiPs in the MotoGP
DMApp).

 Automated discovery of service dependencies through Consul (i.e. location of Websocket
and MongoDB services).

 Health check API checking service dependencies i.e. if the services that the Layout service
depends on cannot be discovered, then the health check will fail, typically resulting in service
restart.

In particular the work in Migration to MongoDB enables the service to scale correctly.

The non-backwards compatible RAML API changes have been rolled into version 4 of the Layout
service API, and the revised layout constraint syntax has been defined in a version 4 JSON schema.

Documentation for this service and its API is available online: (26)

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 36 (of 99) © 2-IMMERSE Consortium 2018

5.3 Websocket

There has only been a single minor change to the Websocket service: the addition of a broadcast
endpoint to support broadcast messages to all devices in a context.

We have spent some time looking at how to scale this service, and tried using the Socket.io driver for
Redis to allow clustering. Basic tests showed that it worked, but that it requires sticky sessions from
the load balancer to be useable, since it is stateful. This means that it wouldn’t recover from instance
failures, since the connection state would be lost with the failed instance. On that basis, we did not
consider it a good solution for scaling.

5.3.1 Lobby

The Lobby service is used to co-ordinate communication services between homes (different
contexts) within the Theatre at Home DMApp. The MotoGP DMApp is not designed to offer inter-
context communication and so does not make use of the Lobby service. There have therefore been
no changes made to this service for the second release.

5.4 Shared State

There have been no changes made to this service. The MotoGP DMApp does not use this service as
there is no sharing of state between contexts in this experience, and this service carries unnecessary
overhead for sharing of state between components in the same context.

5.5 Logging and Monitoring

5.5.1 Logging

Internal platform logging for the second release is provided by the Elastic Stack in a very similar way
to the description provided in deliverable D2.3 (3). As described in Section 3.2 above, two of the
Elastic Stack components, Logstash and Kibana, are deployed within the Rancher Ops stack while
Elasticsearch itself is hosted directly in AWS. Logs from 2-IMMERSE services are collected from
containers by Logspout and logs from the Client Application and its associated DMApp Components
are received by posting a JSON structure to the Logging Service in the same way as for the first
release.

The range of fields extracted by Logstash has been extended to include:

 contextID, deviceID, dmappID, dmappcID: Identifiers for the current context, device,
DMApp and DMApp Component respectively.

 documentID: An identifier for the current document being edited within the Production
Tools.

 instanceID: A client-specific identifier used to support device discovery and synchronization.

 api: Denotes a REST API call, from which contextID, deviceID, dmappID and dmappcID can
also optionally be extracted.

 logmessage: A descriptive message

 body: The body of a REST API call

 xpath: The specification of a location in a Timeline document, using the XPath format

 source: The service or application creating the message

 subsource: A specific module within the service or application

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 37 (of 99)

 level: The relative importance of the message (i.e. the log level)

 sourcetime: The timecode (local to the source) at which the message was created

 fromlayer, tolayer: Fields used to record changes in the video layer being presented from a
specific DASH stream manifest.

 env: The platform environment currently being used, i.e. production, test or edge.

Additional saved searches, visualisations and dashboards have been created within Kibana to support
debugging and also to support analysis of how the platform is used during MotoGP trials. For
example, DASH layer change information can be plotted to evaluate the quality of different video
streams being displayed simultaneously across multiple devices within a context. These real-time
plots can be used to test and refine the operation of the Bandwidth Orchestration Service described
in Section 4.11 below. A new dashboard has also been created to summarise the user identities
accessing the MotoGP DMApp and the start times of their different sessions.

One significant enhancement to logging and monitoring within the second release has been the
integration of Google Analytics for monitoring user interactions with DMApp Components. The
purpose of this integration was enable the project team to answer specific research questions about
the way triallists engaged with the various MotoGP DMApp features as they progressed through the
experience. Google Analytics (GA) event tracking is managed by a dedicated DMApp Component
running within the MotoGP DMApp on every device. DMApp Components are instrumented in
accordance with a design document which has been developed in conjunction with the production
team. GA events are fired by individual DMApp Components and then collected and transmitted by
the dedicated component. Custom Dimensions are used to automatically attach the contextID and
deviceID to each event fired within a session scope. A Custom Metric is used to record the precise
elapsed time the event is fired, which is necessary because GA does not provide flexible access to
event timing information.

Within Google Analytics, several dashboards and custom reports have been created to allow triallists’
behaviour to be examined, while built-in dashboards are also helpful to visualise the active triallist
population. Figure 14 and Figure 15 below show examples of dashboards used to summarise a day of
triallist activity and Figure 16 shows the ‘Context Explorer’ for one particular trial session.

It is important to note that no personally-identifiable data is recorded by Google Analytics. In order
to associate a triallist household with a particular session, the contextID must be matched to the user
identity which is only logged within the 2-IMMERSE platform.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 38 (of 99) © 2-IMMERSE Consortium 2018

Figure 14 - Summary data for all activity on one day

Figure 15 - Geographical distribution of sessions in one day

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 39 (of 99)

Figure 16 - Extract from ‘Context Explorer’ dashboard summarising user behaviour for one trial
session. Note the split of activity between two different companion devices

5.5.2 Monitoring

In operating the Mantl infrastructure it became clear that an externally-visible dashboard that would
expose metrics of platform health would be useful for the project team. Although much of this
information is exposed in the various Mantl UIs we wanted to aggregate all of the relevant
information into a readily accessible single dashboard.

To do this we built a simple dashboard using the Smashing Ruby framework that exposes the
following information for production, edge and test instances:

 Most recent Docker-Hive test results (Red/Amber/Green)

 Marathon job status (Red/Amber/Green)

 Mantl Consul health check status (Red/Amber/Green)

 Machine health status (Red/Amber/Green)

 Bar graphs per cluster machine of CPU Load and Docker Volume percentage usage

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 40 (of 99) © 2-IMMERSE Consortium 2018

 Graphs of unique context count, warning log message count, and error log message count
per hour over the previous 12 hours from ElasticSearch

The per-machine stats were enabled by installing the Sensu (23) monitoring agent on each of the
Mantl machines.

We also enabled an email alerting mechanism based on changes in the state of Mantl Consul health
checks.

We are in the process of migrating this dashboard to the Rancher environment, although the
Rancher UI generally exposes machine and service statistics much more comprehensively than the
Mantl UIs.

We have deployed Sensu with the Uchiwa (24) dashboard into Rancher.

We have also deployed the Prometheus/Grafana (17) monitoring stack into the production
environment as it is available in the Rancher community catalogue. This has to be deployed on a per-
environment basis (rather than a single shared instance in the Ops environment, due to the way it
interacts with Rancher).

5.6 WallClock Service

There have been no changes made to this service.

5.7 Synchronisation Service (Inter-Home Sync)

The first and second Releases of the 2-IMMERSE Platform rely on two main mechanisms to achieve
synchronisation in the immersive media experiences realised so far:

1) DVB-CSS inter-device synchronisation protocols
2) The DMApps timeline correlation to a shared WallClock

However, both approaches suffer from particular limitations that constrain their applicability to the
diverse set of possible synchronised distributed media experiences. In Annex A, we briefly describe
the limitations of the current approaches, outline our proposal for a new synchronisation model and
provide an architectural overview of the cloud-based Synchronisation Service. This service was not
required for the MotoGP DMApp but it is expected to be relevant for the watching Theatre in Schools
service prototype (to be confirmed), and an important part of our reference architecture. The new
Synchronisation Service has been implemented but not yet been integrated with the 2-IMMERSE
Platform; integration is planned in the next quarter.

5.8 Authentication

Within the original platform architecture proposed within deliverable D2.1 (1) we had identified the
need for an Identity Management and Authentication Service, however, this had not been developed
as part of the first release as per deliverable D2.3 (3).

The service has been implemented, along with a companion service ‘auth-admin’ which provides a
web administration interface for the authentication service.

The principal role of the authentication service is to provide user identity and access to user profiles
to 2-IMMERSE clients and services. It also functions as an identity provider for the API gateway,
which enables controlled access to platform services.

The 2-IMMERSE platform uses OAuth2 (27) access tokens to secure API endpoints. All requests pass
through the API gateway which evaluates authentication credentials for validity. The gateway is
responsible for redirecting clients to the authentication endpoint and users can authenticate with
the platform using the password flow.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 41 (of 99)

Once a user is authenticated and they have unrestricted access to services, their token is forwarded
with requests to backend services allowing the service to identify the user and lookup additional
configuration specific to the currently logged in user (for example, user preferences persisted in their
user profile).

Functionality provided by the authentication service includes:

 User Management:
o Creation, update and deletion of users, their profiles, roles and groups.

 Access token management for authenticated users

 Access to media decryption keys for authenticated users

 Device management including supporting the on-boarding flow

 Health check

The Authentication service is implemented in Go, and uses MongoDB as its persistent user data
store. The Auth Service API specification is available online (28)

5.9 API gateway

In the process of designing and developing the Auth service, and looking at the how it would
integrate with the API gateway, it became clear that Kong would be a complex system to administer
in our architecture and that a particular feature that we would need was only available as enterprise
plugin (OAuth2.0 Introspection). This feature is available in Tyk, along with direct endpoint analytics.
Tyk also provides a self-service developer portal, which is likely to be required in future as we engage
with and support developers who would want to develop DMApps, DMApp Components and
additional platform services.

On that basis, we have switched to using Tyk as our API Gateway in the Mantl infrastructure, and
subsequently in the Rancher-based infrastructure.

More information is available on Tyk online (15)

5.10 Data Playback

5.10.1 Architectural Overview

The Data Playback service has been added to the platform for managing production-related non-
audio/video information (data-streams) in a generic way. This could be information like timing data,
scouting information, statistics etc. which come in different shape and forms depending on
production type and available data sources. Today, this information is an essential component of the
sports broadcasting experience.

The goal of the data playback service is to be able to capture, transform and distribute this
information to clients in a scalable and re-usable way. The schematic of this process is shown below
in Figure 17.:

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 42 (of 99) © 2-IMMERSE Consortium 2018

Figure 17 - Data Playback Service Overview

Different data sources are managed by specialised micro-services per source, called data adapters.
The data adapters capture and transform the data for generic storage. From the storage point
different mechanisms can be used to do the actual distribution. A client library helps the receiving
end, and dispatches the data internally in the client.

Since it was known that the service should run under the AWS (Amazon Web Services), when
designing this part of the system, applicable AWS services have been used for creating the service.
While this to some extent contradicts the requirement of being portable, no services have been used
where there is no equivalence available from other major cloud providers (like Google and
Microsoft). There are also a lot of open source alternatives in these areas.

The above stages are described in detail in the following sections.

5.10.2 Adapter

To be able to meet different data capture requirements from different production types, a concept
of an adapter is utilised. An adapter is a Docker-contained microservice hosted in the 2-IMMERSE
platform specialised in capturing data and storing it in way that is accessible to the downstream
system. The idea is that the Data Playback system should be able to adapt to existing production
workflows instead of putting requirements on them to support a specific API. This means that these
adapters need to be created, one for each new data source encountered.

An adapter needs to conform the data to a form where it can be stored in a time series to be
synchronised with video. Another responsibility of the adapter is to separate the data into arbitrary
subjects. The reason for the latter is to optimise bandwidth by avoiding unnecessary communication
to the client.

5.10.3 Storage

As storage solution, AWS DynamoDB is used. This is provided in AWS as a SaaS (Software as a
Service) and is described by Amazon as “a fast and flexible NoSQL database service for all
applications that need consistent, single-digit millisecond latency at any scale”. In the data playback
service, it is used as a key/value store where each production is stored in a unique table. In a table,
data is organised in timestamps under an event type.

https://aws.amazon.com/nosql/

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 43 (of 99)

5.10.4 Distribution

Three different distribution mechanisms are provided for supporting three different scenarios:

5.10.4.1 Segments/CDN

When there is a lot of data which is timewise related to video, for example when providing tracking
data per player in football, the data can be served in chunks distributed through a CDN (Content
Delivery Network). This mimics how DASH-encoded video is distributed and enables the data to
travel through HTTP/S. The CDN is a hosted service at Amazon which means that the scaling problem
is handled automatically.

5.10.4.2 Push/IoT

The Push/IoT (Internet of Things) mechanism is suitable for pushing small real-time messages, which
could be exemplified by timing data, sensor data or state changes and similar. These will, compared
to the segmented approach, have a much lower latency. This mechanism uses the AWS IoT service to
enable scalability in a live situation. To use Amazon’s own words: “AWS IoT can support billions of
devices and trillions of messages, and can process and route those messages to AWS endpoints and
to other devices reliably and securely”.

As adapters are writing data to DynamoDB, a Docker-hosted micro-service, this acts as the glue
between the storage and the IoT service. This service connects to a streaming port of DynamoDB and
continuously transports all changes to the database to the IoT distribution.

5.10.4.3 Request/HTTP/S

This is a request/response mechanism over HTTP/S for retrieving backlogs of data (if a client joins a
live broadcast or on-demand session which has already started) and for ad hoc queries against the
storage. This is implemented as service running in Docker. This part of the service can be scaled more
traditionally by running multiple instances of the container.

5.10.5 Client API

There is a client API to hide as much backend details as possible for the client. It is not necessary for
the client to know which distribution mechanism is used, for example. After data is received it is
synchronised and dispatched with the event timeline determined by the DMApp. For ad hoc queries,
there is a specialised DMApp Component that can be instantiated as part of the DMApp.

5.10.6 MotoGP Implementation Overview

Figure 18 below shows the Data Playback implementation for the MotoGP trial. The flow of
information is described by arrows. A blue background illustrates 2-IMMERSE-implemented micro-
services and a yellow background shows AWS services.

Figure 18 – MotoGP Implementation overview

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 44 (of 99) © 2-IMMERSE Consortium 2018

The components are:

A) MotoGP source: The source for the MotoGP trial is a text file containing timing data and
other relevant race information

B) MotoGP adapter MS (micro-service): The implemented MotoGP adapter simulates a live
scenario by reading the source file and writing the data to DynamoDB in the pace
determined by the race. This makes it possible to do the trial as-live, although it will be run
on demand during the trials.

C) AWS DynamoDB: Storage solution, provided by AWS as a service.
D) Pusher MS: Link between storage and AWS IoT
E) Req/Repl MS: HTTP/S interface to storage.
F) AWS IoT service: Push interface to clients.
G) Client API: Reusable library for interfacing with the backend.

5.11 Bandwidth Orchestration Service

One of the key learnings from the first release of the platform for the Theatre at Home trial was that
within the 2-IMMERSE project we require architectural support for component bandwidth
management. In the Theatre at Home trial we observed situations where:

1. Multiple video components would end up competing for bandwidth (typically video chat
(WebRTC) and DASH video streams)

2. At the point where several components were being pre-loaded prior to a timeline transition,
video bitrate would be impacted.

We note that MPEG’s Server and Network Assisted DASH (SAND) specification (5) defines an
architecture and interfaces to specifically address QoS and QoE support for DASH-based services.

5.11.1 Requirements

The high-level requirement for component bandwidth management is to be able to monitor and
manage the bandwidth being consumed by streaming media (principally DASH video) components in
a running DMApp, typically orchestrated over multiple client devices by the layout service, to
optimise the quality of experience. In a basic version:

 The DASH video player components on all of the client devices would report their status to a
service that can monitor how much bandwidth each component is consuming, and whether
it is managing to decode and present video without problems (stalls etc.).

 In the scenario where there are sustained reported stalls, or observed competition for
bandwidth (i.e. bandwidth oscillations between multiple player components), the service
should send control messages to the components to prevent such competition (i.e. by having
one or more components switch to a lower rate representation).

 In the scenario where none of the players can move to a lower rate representation, the
service should work with the Layout service to determine which of the player components
might be terminated to improve the overall quality or experience for the remaining players.

 In the scenario where there is more than one instance of a video player presenting the same
ABR stream, these may be managed to show a common representation where feasible (and
hence avoid downloading multiple representations of the same content).

 Other platform services may benefit from being made aware when player components are
experiencing issues (e.g. stalling), for example the Timeline service.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 45 (of 99)

5.11.2 Design Considerations

The problem of finding the correct choice of bitrates for the laid-out components such that higher
priority components will be minimally impacted at the expense of lower priority components, and
that the total bandwidth required will not exceed a given limit, can be mapped to a known
computational problem called the “Quadratic Knapsack Problem” (29). This problem is NP-Hard (and
even NP-Complete), which means that an algorithm that finds an optimal solution will run at an
exponential time. In practical terms, it means that the amount of time required to compute the
optimal solution is too long to be usable, and therefore, we can only use an approximation algorithm.
There are a few papers depicting such solutions (30), (31), (32), (33) however the existing
implementation is very complicated and released for academic use only (34).

We'll start by assuming that all the components are using the same network (e.g. same Wi-Fi or LAN)
as this is the simplest case and is the expected situation for our service prototypes.

There are two main types of scenario that will require different solutions:

1. We know what the bandwidth limit is (e.g. the capacity of the network under the assumption
that it is fully available to us). This case can be solved by an approximation algorithm as
mentioned above.

2. We don't know what the bandwidth limit is (e.g. we only know that components are
struggling). In this case, the best we can do is to define a different problem where we try to
find a minimal set of bitrate reductions (under the constraints of priorities) that will free up
enough bandwidth to satisfy the maximum number of components. This problem can also be
mapped into a QKP but will require a different mapping from the first solution above.
However, in this case, we will never know when we have free bandwidth so we can possibly
use higher bitrates if available (e.g. a shared network and some other user stops using the
network, freeing up bandwidth).

In order to compute any of the above, we need to know which components should participate in the
management algorithm, what their priorities and available bitrates are and what the bandwidth limit
is, if one is known. The bitrates and priorities should be a part of the definition of the DMApp while
the bandwidth limit can be set when the DMApp is initialised according to the specific instance. The
Layout service can put all of this information into MongoDB so the management algorithm can find it
and use it.

Some of the data matrices required by the algorithm are constant and can be computed and only
once (or at least whenever the layout is changed to reflect components that are added, removed, or
move to devices on other networks) and stored in the database or in memory while others change
according to the collected statistics.

We can use a time series database such as Graphite or InfluxDB to store data collected from
bandwidth usage reports sent from the various components. The background recommendation tasks
will retrieve statistics from that DB to assess possible bandwidth starvation for components and
compute required actions according to the above mention algorithms if needed.

More complex scenarios include DMApps that are spread across multiple networks, DMApps that
share a network with other users, and DMApps that do both. These cases are much harder to deal
with and should probably be solved using the second solution mentioned above.

Since we know what the DMApp is doing and which stream/content each component is playing, it is
possible to use DASH SAND messaging to request segment caching in local gateways and thus reduce
overall bandwidth. However, even a simple local cache would accomplish the task since the DMApp
is a single entity and thus caching every segment for a relatively short period of time (several
seconds) is feasible and simple. When caching is involved, the above computation becomes much

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 46 (of 99) © 2-IMMERSE Consortium 2018

more complicated as available bitrates are no longer constant and should change according to
caching status (and thus even the above-mentioned constant matrices are no longer constant!),
making the mapping dynamic. (33)

For an initial implementation, it will likely be simpler to use a greedy algorithm, which is farther away
from the optimal solution. It has been mathematically proven that greedy algorithms can only
achieve a 2-approximation to the optimal knapsack solution, meaning we'll be able to fit only up to
half of the possible bitrates/prioritised-components into a known bandwidth limit than an optimal
solution would fit.

Figure 19 below shows how the Bandwidth Orchestration Service (and its time series database)
integrates with the existing services and clients.

Figure 19 – Bandwidth Orchestration Service Client and Service Integration

5.11.3 Implementation

The Bandwidth Orchestration Service (BOS) has been implemented as a Node.js application.
Background tasks are created and executed using the Agenda lightweight job scheduler. Agenda uses
MongoDB to create queues and persist jobs. This gives us robustness against service failures and also
allows us to scale up to multiple service instances.

MPEG SAND format metrics reported by DMApp components are persisted in an instance of
InfluxDB.

Figure 20 below shows a sequence diagram for interactions between existing clients and services.
The BOS is connected to the Websocket service. When a DMApp is launched in the Layout service, it
sends an init message to the "bandwidth.orchestration" room, which the BOS is listening for.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 47 (of 99)

Figure 20 - Bandwidth Orchestration Sequence Diagram

The DASH player components send SAND specification metrics to BOS, which will filter out invalid
data such as that which indicates using segments from the browser's cache (unrealistically high
bandwidth usage). Valid data is pushed into InfluxDB.

As there is currently no server-side DASH manifest parser, we rely on the client-side manifest parsing
to get the available audio/video bitrates for each player. These are also stored in InfluxDB.

The background tracking task runs every five seconds by default. BOS assumes that if no metric data
has been received, the DMApp hasn't started running yet. It will, therefore, not do anything until that
happens.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 48 (of 99) © 2-IMMERSE Consortium 2018

As previously noted in the design consideration section, BOS uses a simple greedy solver to give a
quick solution, and addresses the cases where the "availableBandwidth" is either known / specified,
or not known. The greedy solver works by grouping components according their layout constraint-
defined priority, and will then iterate these groups from lowest to highest priority, reducing the
bitrates of the lower priority components.

Having determined some action recommendations for a DMApp component, it sends a message to
the Websocket service in the "bandwidth.orchestration.{DMAppId}" room, to which the DASH client
components are listening.

The currently-defined actions are "preserve", "downgrade", and "disable", where:

 "preserve" means to keep the current bitrate

 "downgrade" means the bitrate should be lowered to the suggested one

 "disable" means the component should be stopped to clear out bandwidth to higher priority
components

5.11.4 Limitations

As previously noted, this algorithm is not optimal but is reasonable for a real-time algorithm.

Component bandwidth is averaged over the past five seconds to try and smooth out sudden spikes.
However, if client bandwidth measurement is a best-effort approximation, then the metrics provided
are often unstable and can lead to jumpy actions.

5.12 HLS Proxy

The HLS-Proxy is a simple reverse proxy to inject encryption key metadata (access token and key
URLs) into HLS playlists. This would be required to support encrypted media playback on iOS
platforms. As noted in Section 6.5.2 this is something we have been working towards but is not yet
available.

5.13 Docker-Hive

Docker-Hive provides a Docker image for running distributed integration tests for some of the 2-
IMMERSE platform services, in a series of test suites. The test suite uses Chakram and Mocha to test
service interactions. By default, test results are reported using the Mocha reporter.

When run in hive mode, a number of test clients can be spun up and run in parallel, supporting basic
load test and scalability testing for the platform services.

The currently implemented test suites are:

01 – layout context APIs

02 – layout DMApp APIs

03 – websocket service

04 – layout packer algorithm

05 – layout dynamic algorithm

06 – layout constraints API

10 - Auth Service APIs

The Docker-hive also includes simple web UI to allow launching of specific test suites against specific
platform instances (edge, test, production).

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 49 (of 99)

5.14 Server-Based Composition

Although some initial work was done looking at the architecture to support server-based
composition, the project is yet to progress this to implementation.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 50 (of 99) © 2-IMMERSE Consortium 2018

6 Client Application Stack

This section of the deliverable describes the client application stack developed to date and its current
status.

6.1 Overview

As noted in the description of the first release (3), there are a number of constituent client software
parts that comprise the application stack to run a DMApp. These are summarised in Table 4 below.

 Constituent part Content Hosting

7 Timeline events Timeline document or live-broadcast
events

CDN, streamed or
broadcast

6 DMApp Components video player, leaderboard, animation
etc.

CDN

5 DMApp SPA

Genre- or programme- specific
application comprised of style
sheet/theme, images, supplementary
content, responsive layout, glue-code
and a Layout Requirements document.

CDN

4 Onboarding SPA

Launches the DMApp SPA
and implements features
common to all DMApps

Genre- or programme- independent
application that includes sign-in/up,
EPG, discover/join/create contexts,
accept/send invites, box office,
broadcaster-specific styling and layout
(e.g. BT, BBC, Sky etc.).

CDN

3 Bootstrapping Application

Launches the Onboarding
SPA.

A simple web page embedded into the
native Cordova application, used to
redirect the browser to the CDN-hosted
Onboarding SPA.

Embedded in
Cordova app.

2 Common support libraries
and resources

e.g. client-api CDN

1 TV Emulator or Cordova
Application

The DMApp Operating
System. Contains the
bootstrapping application.

DVB CSS, DIAL, Cordova extensions. App store

Table 4 - DMApp Client Application Stack

In the sections of the document that follow we describe developments in the various parts of the
client application stack to deliver the MotoGP service prototype:

 MotoGP DMApp Implementation – note that the DMApp Components themselves are
described in Section 7.

 Client API

 HbbTV2.0 Emulator

 Companion Devices

 HbbTV Showcases, tools and software libraries

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 51 (of 99)

6.2 MotoGP DMApp Implementation

6.2.1 DMApp Composition

The MotoGP DMApp is composed of the elements listed below:

 Client input documents
There is one client input document for running as a TV, and one for running as a companion
device.
These client input documents are used to launch the DMApp on a TV device and on a companion
device respectively.
The client input documents include:

o General configuration of the client-api
o A URL of the HTML document to include.
o A reference to the DMApp control component. The TV client input document includes

DMApp control component configuration parameters including references to DMApp
configuration files.

o Declarations of layout regions and their properties.
o Options to enable additional debugging and development features when the DMApp is

being run for development or testing.
o The TV client input document includes URLs for the timeline and layout documents, and

options to select alternative timeline documents.

 Timeline documents
Timeline documents are loaded into the Timeline service at Context and DMApp initialisation.
These include a list of all components which are instantiated during operation of the DMApp,
and the temporal relations between components.
The DMApp currently includes the following timeline documents:

o A minimalistic timeline. This includes the minimum viable functionality to test operation
of the DMApp

o 3 test timelines starting from the beginning of the programme, the beginning of the
MotoGP race, and the beginning of the race review section respectively. These include a
small number of sample components, such that the DMApp can be tested with more
components running, and each programme section can be tested individually.

o A minimalistic timeline with added event definitions suitable for use with the Timeline
Authoring Tool.

o 2 authored timelines generated using the Timeline Authoring Tool from the minimalistic
timeline with added event definitions. The second of these timelines is the default
timeline and the one which is used for user-testing and trials. This timeline includes all of
the components required for a user-facing experience.

o Slight modifications of the above 2 authored timelines for testing and development
purposes.

 Layout document
This includes layout constraints for all components listed in the timeline documents.
A single layout document is used for all timeline documents, for both TV and companion device
operation.

 HTML document
There is one HTML document for running as a TV, and one for running as a companion device.
The HTML documents include the Document Object Model (DOM) elements which are used for
layout regions and for user interface backgrounds. The HTML document elements are styled by
the CSS documents.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 52 (of 99) © 2-IMMERSE Consortium 2018

 CSS documents
There is one CSS document for running as a TV, one for running as a companion, and one for
common definitions on both TV and companion.
The CSS documents define the sizes, positions, backgrounds, and other properties of document
elements, including those used for layout regions. The CSS documents also define common
definitions used by DMApp components within the DMApp, including font and other styling
properties; this is done by means of CSS rules and CSS variable definitions.

 Assets
Assets such as icons, fonts, animations, MotoGP data, and other static files are uploaded to fixed
URLs on the origin server where they can be referenced by MotoGP components as required.

 Media
Media assets (video and audio) are uploaded to fixed URLs on the origin server where they can
be referenced by MotoGP components, configuration files and timeline documents as required.

 DMApp control component
The DMApp control component is an invisible DMApp Component which is referenced directly in
the client input document and is loaded before context and DMApp are created or joined.
The DMApp control component is the same for both the TV and companion devices, however it
changes its behaviour depending on it whether it detects that the client is operating as a TV or
companion device.
On both TV and companion, the DMApp control component handles:

o Loading and parsing configuration files, and making the configuration available to other
DMApp components. To avoid configuration mismatches, configuration files are loaded
only on the TV control component, which distributes the parsed configuration to
companion control components.

o Loading an authentication component which shows a username and password dialog, if
authentication information is not already available.

o Initialising DMApp-wide shared variables: experience level and TV scaling, to an initial
state, if they do not already have a valid state.

o Providing DMApp-level debugging interfaces for testing and troubleshooting.

On the TV, the DMApp control component handles:

o Adjusting the layout to fill the screen regardless of size/resolution (this is required for 4K
TV support).

o Applying TV scaling variable layout changes.
o Aggregating the requested picture in pictures from all companion devices, and sending

updates to the layout service to enable/disable picture in picture components on the TV
and respective companion devices as necessary.

o Handling replays and event playback on the TV and where applicable across companion
devices.

On companion devices, the DMApp control component handles:
o Detecting whether the current device should be considered a phone or a tablet, and

adjusting the requested picture in pictures as necessary.
o Adjusting the user interface and which regions are enabled when switching between

Inside MotoGP, Watch Live and Race Review modes, and when switching between phone
and tablet modes.

 Configuration files
Some aspects of the MotoGP DMApp are controlled by separate configuration files. These files
are loaded by the DMApp control component on the TV.
These files include:

o Events listing

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 53 (of 99)

This includes a list of all events which can be used for replays, and the details, including
media URLs and descriptive text, for each event.
This configuration file is automatically generated from a spreadsheet which was created
as part of the video editing and design processes.

o Inside MotoGP video listing
This includes a list of all videos shown in the Inside MotoGP section, and the details,
including media URLs and descriptive text, for each video.

o Tyre configuration
This confirmation file includes MotoGP tyre information used to populate the tyre
information section of the companion device leader-board panel.

o Picture in picture configuration
This configuration file includes the mapping of MotoGP on-board video streams to
MotoGP riders, media URLs, and configuration options used when
displaying video and 360°/virtual reality video as a picture in picture.

 MotoGP-specific DMApp components
The MotoGP DMApp includes a number of MotoGP specific components, these are described in
detail in Section 7.1.

6.2.2 MotoGP data

MotoGP data as provided by Dorna is in a documented, timestamped XML format. Each line or data
tag describes an event, an initial state, or an incremental change in state, at a particular timestamp.
This data is required for multiple DMApp Components in the DMApp, for example the leaderboards
and statistics/timing panels. The MotoGP data contains multiple event/data types.

For efficiency, it is preferable to minimise the number of copies of the MotoGP data which need to
be downloaded and processed on each device.

As multiple components DMApp Components require use of the MotoGP data, a common data sink
module was developed which is used by all components which consume MotoGP data (except those
described in Section 6.2.2.1). The data sink module builds and updates a model of the current
MotoGP state which is synchronised to the DMApp clock, by processing the MotoGP data and
incrementally applying state updates and recording events at the time given by the timestamps in
the data. A read-only view of this model is exposed to the owning DMApp Component, which can
query it and respond to emitted change and notification events as required. Using an updated model
instead of forwarding incremental updates to DMApp Components improves performance and
allows both forward and backward seeks in the data due to clock step-changes to be handled
correctly and efficiently.

The data sink module provides an abstraction where the interface for receiving data is independent
of the type of the input. The raw input data (XML or otherwise) is not exposed to the DMApp
Component which uses the data sink module. Supported input types include:

 Single XML file (as provided by Dorna)

 Multiple XML files, with manifest
This is produced by processing the single XML file from Dorna with a script which divides it
into smaller chunks which can be independently loaded, partially indexes it, and stores the
details of the resulting chunk files and indexes in a separate XML manifest file. This improves
efficiency and reduces client start-up time relative to using a single XML file.

 Data playback service
The data playback service provides a data streaming and subscription mechanism where
individual event/data types can be acquired and streamed in real time.
The data is returned in a JSON encoded form which differs from that used in the XML
documents.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 54 (of 99) © 2-IMMERSE Consortium 2018

The data sink module acquires multiple event/data types and re-merges them to provide a
consistent and updated model of the current MotoGP state.

 Spooler DMApp Component
This is a DMApp Component which itself uses a data sink module with one of the above 3
input types.
Data sink modules which use a Spooler DMApp Component as an input present the data
model owned by the Spooler to their owning DMApp Components, instead of creating an
independent model. As DMApp Components only have a read-only view of the data model,
an individual component cannot inadvertently modify data used by another component,
even though they are using the same data model.
In the MotoGP DMApp there is one Spooler component per device, and all other MotoGP
data consuming components (except those in Section 6.2.2.1) use it as their data source.
Consequently (excluding Section 6.2.2.1), each device only needs to download one copy of
the MotoGP data and update one MotoGP data model, which has a significant performance
benefit relative to each component individually acquiring and/or processing data.

6.2.2.1 Direct receive from data playback service

Some graphical animation DMApp Components connect directly to an instance of a data playback
service receiver component, and consume the encoded form output by the data playback service
directly. Only one instance of the data playback service receiver component as used by these
components exists per device, this reduces the total quantity of data to be downloaded and
processed. The reason that we have a mix of two different approaches in the implementation is
because we are using the MotoGP trial to understand how to evolve data playback in the future.

6.2.3 Deployment

For testing purposes 3 copies of the MotoGP DMApp (excluding audio and video media) are deployed
to the origin server.

These are labelled as edge, test and production. These correspond to 3 branches in the MotoGP git
repository: master (the default branch), test and production respectively. New features are generally
deployed to edge first, for testing, and if the results of testing are satisfactory they are also deployed
to test. When the feature is suitable for production (use by external users), it is also deployed to
production.

As assets, DMApp components, and other deployed items have fixed URLs, the build and deployment
scripts adjust these URLs to use different directories when building and deploying to edge and test.
The service URLs referenced in the client input documents are also adjusted when deploying to edge
and test, to default to using the corresponding edge and test deployments of the services.

To avoid accidental deployments to production and test, the build and deployment scripts include a
number of checks of the current state of the MotoGP git repository both locally and relative to the
copy on the server before permitting a deployment to production and test.

6.3 Client API

6.3.1 DMApp Component Interface

DMApp Components are a way to encapsulate functionality and user interface elements in discrete
entities which are individually specified and controllable by the Layout Service.

A DMApp Component is a JavaScript object which as a minimum meets a defined and documented
JavaScript interface. This interface does not require the use of any specific library or style to create a

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 55 (of 99)

DMApp Component, but is instead designed to ensure flexibility of implementation, and support
simple conversion or wrapping of existing 3rd party functionality into DMApp Components.

Additional features have been added to the DMApp Component Interface, and minor changes made
to existing areas which were present in the first release, however these changes and additions have
been made with backwards compatibility in mind.

Existing DMApp Components designed for the first release of the interface continue to work with the
second release and with intermediate unreleased versions. This includes DMApp Components for the
Theatre at Home trial.

Notable changes to the DMApp Component interface are listed below:

 DMApp Components can now directly instantiate DMApp Components as children of
themselves. This changes the organisation of DMApp Components from a flat list to a tree.
This significantly aids component re-use as a DMApp Component can use the functionality
and user interface of another DMApp Component by composition. For example, a DMApp
Component can be built as an aggregate of one or more existing smaller DMApp
Components.
This change required various minor additions to the interface, however components which
are instantiated as children of another component and/or which do not instantiate their own
children are not required to be aware of this change in functionality or to the interface.

 In a change from the first release, the Layout Service may now indicate that a DMApp
Component is to be temporarily stopped and made invisible, but may be resumed in the
future instead of being destroyed. Existing components do not need to be aware of this new
state to function correctly, however the interface has been extended such that components
may choose to handle this state in a custom way if necessary, or to enter this state of their
own accord.

 The DMApp Component interface has been changed such that components can now choose
to defer their own destruction or their transition to a hidden state. This is useful for
components which should show a visual transition when being removed, instead of
disappearing from the screen immediately. Existing components and those which do not
require an exit transition are unaffected by this change.

 Various additions have been made to the DMApp Component interface to support additional
and extended forms of component parameter filtering, validation, transformation and
propagation to child components. Existing components are unaffected by this change.

 More DMApp Component state change events have been added. These include events when
the DMApp Component is attached to or detached from the Document Object Model (DOM)
document. Existing components are unaffected by new events which were not previously
part of the interface.

 The DMApp Component debugging and logging interfaces have been extended to support
further enhanced component diagnostics and debug control.

 The interface by which DMApp Components and other Client API module instances can send
and receive local or remote messages from each other has been significantly altered. This is
due to design choices in the original interface and addressing format which could not
support sending messages to DMApp Components which are descendants of other
components, as now implemented. The updated interface and addressing format handle this
new case and previous use-cases. This is not a significant backwards compatibility issue as
this interface was very sparsely used in the first release.

 DMApp Components may now be assigned to a separate local clock domain for media
synchronisation purposes. This is to facilitate the use case where a group of media
components are synchronised with each other instead of being synchronised with the wider
DMApp.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 56 (of 99) © 2-IMMERSE Consortium 2018

Other Client API functionality and interfaces not attached to the DMApp Component interfaces are
available for use by DMApp Components which choose to use them. Notable changes and additions
to these interfaces and functionality are listed below:

 The interfaces for observable values/variables (referred to in the client documentation as
“signals”) have been extended. New functionality includes: support for transparent
propagation and aggregation of signal values between different devices, further value
transformation/filtering mechanisms, and support for associating signal instances with type-
specific names of either device or context scope.
These changes allow otherwise unrelated DMApp Components or other client module
instances to share, aggregate or observe state keyed by name either locally to a single device
or across multiple devices in a context, in an explicit and straightforward way which is robust
and minimises overhead.

 Addition of various utility methods and interfaces to ease development in general and
encourage robust and reliable code. These include areas such as immutability, run-time error
detection, and event management.

6.3.2 Other Client API Improvements

In addition to functionality and interfaces which are exposed to and/or useful for DMApp
Components, other improvements were made to support non-component development and usage,
and improve non-component specific functionality. Notable changes and additions include:

 Addition of a documented input document format which can be used by the Client API to
load and configure a DMApp. This removes the need to develop custom loader pages for
each DMApp and reduces the overhead associated with developing a DMApp.
This includes a mechanism where the input document can specify optional features which
can be enabled by developers and testers to run DMApps in a debug or testing mode to
more easily facilitate development and testing.

 Robustness and reliability improvements in various areas of the client including: media
playback, media synchronisation, and error handling and reporting.

 Additional debugging commands and interfaces to facilitate easier and more rapid
troubleshooting and development.

 Changes to facilitate use of the Client API with the Production Tools. These include remote
control mechanisms to change the current clock time and send control messages to the
DMApp.

 Changes to the media player component to facilitate reporting to and control from the
Bandwidth Orchestration service.

 Window resizing and device orientation changes are now handled and forwarded to the
Layout Service as necessary.

 An additional interface to facilitate logging of Google Analytics events to a DMApp
Component which assigns itself as the handler and forwarder of analytics events.

6.4 HbbTV2.0 Emulator

6.4.1 Firmware Overview

The firmware and the TV emulator device have been developed to meet the needs of the public
service trials. Together they have evolved into a fully functional set-top-box that will also be used for
the Football at Home and Theatre In Schools service prototypes.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 57 (of 99)

The firmware is a software bundle that emulates a subset of HbbTV2.0 features. It has been
extended to satisfy the requirements of our four service trials and to help users configure multiple TV
devices and launch experiences; a process called “on-boarding”. It also provides a dedicated wireless
access point to improve the quality of network service in the venue in which it operates.

This section below gives an overview of the components of the firmware; full details of the individual
components and how they work together to deliver a complete system and provided in Annex B.

6.4.2 High-level Components

The 2-IMMERSE TV emulator firmware consists of the following high-level components:

1. Operating System
2. HbbTV2.0 emulator services (App2App server, DVB-CSS server and DIAL server)
3. On-boarding system
4. Network connectivity management layer
5. Integrated Wi-Fi router/access point
6. Captive portal
7. Admin portal
8. Web kiosk service
9. SSH tunnel service for remote debugging of Chromium web pages
10. Web server

The diagram below gives an overview of the services running on the TV emulator. Each box highlights
a system service started on boot, together with its main dependencies.

Figure 21 - Overview of firmware services running on the TV emulator device

6.5 Companion Devices

6.5.1 Android

Platform support for Android is mostly unchanged since the first release. The only notable change
has been to the version numbers of dependencies to address minor issues which have been fixed in
those dependencies since the first release was developed.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 58 (of 99) © 2-IMMERSE Consortium 2018

6.5.2 iOS

Platform support for iOS has been improved since the first release to address functionality which was
incomplete or missing. Most notably this includes:

 Changes to device discovery to fix reliability and incompleteness issues.

 Changes and bug fixes to correct iOS-specific layout and styling issues.

 Support for encrypted HLS media playback is currently in development but as of the second
release is not fully operational.

6.6 HbbTV showcases, tools and software libraries

2-IMMERSE partner IRT have developed showcases to demonstrate features of the HbbTV 2
specification to broad audiences at a number of occasions (including IFA and IBC 2017). These
showcases have been helpful in convincing various stakeholders, including decision makers in
broadcasting houses, of the HbbTV 2 feature set. Also, we have shared the showcase applications
with HbbTV manufacturers for interoperability testing with their early product prototypes. Thus, IRT
have been able to stimulate market adoption of HbbTV 2 from both ends of the value chain. By-
products of the showcase development are a set of software tools and libraries. A subset of these
libraries, the Android libraries for companion-screen synchronisation and automatic discovery of
HbbTV devices, is already in use in the current 2-IMMERSE Client application stack. We plan to
integrate the whole set of libraries and tools with the 2-IMMERSE platform in year three of the
project (2018). On this basis, a validation of the 2-IMMERSE services is planned to be run on actual
HbbTV 2 devices.

Annex C provides details of the showcase tools and software libraries for use in HbbTV applications:
Android and Windows-platform-based companion applications that have been developed. It also
introduces server-side components, including a stand-alone tool to generate a media timeline for
Transport stream and a Material Resolution Service.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 59 (of 99)

7 Multi-Screen Experience (DMApp) Components

This section provides details of the specific capabilities of the DMApp Components designed and
developed for the Second Release, with notes on how they are being used within the MotoGP trial.

It should be noted that the scope of the MotoGP trial is restricted to a single TV Emulator device,
which presents content on the main household TV, and multiple companion devices, which present
additional content and allow user interaction with the experience.

7.1 DMApp Components available in the Second Release

Table 5 below provides a summary of all of the DMApp Components included in the second release,
and hence for the MotoGP service prototype. The presentation of a track-based sport of course has
very different requirements to Theatre at Home trial experience which was described in the first
release (deliverable D2.3). While basic component functionality such as video playback and the
presentation of images and formatted text has been re-used, a significant number of new
components have been developed. Many of these components address the requirement to present
‘live’ and changing data about aspects of the MotoGP race through animated graphical elements on
both the TV emulator and companion devices. While the table below focuses on their application to
MotoGP, it is expected that a large amount of their functionality will be re-used when implementing
the forthcoming Football at Home experience.

Name Description Comments

Video This is an HLS/DASH player which
is capable of playing out video
and audio on the TV emulator or
companion device, at video
resolutions up to 1080p25 with
stereo audio. Video playback can
be synchronized within and
between devices.

In the MotoGP DMApp, separate
instances of this component are
used to present the main race
video and two audio tracks
(commentary and ambient audio,
which can be independently
controlled) on the TV emulator.

HTML Snippet This presents formatted text-
based content on the TV
emulator or companion device.

In the MotoGP DMApp, this is used
for static text overlays such as the
“MotoGP™” box and replay/event
titles.

Image This presents a static image on
the TV emulator or companion
device.

In the MotoGP DMApp, this is used
for static graphical overlays
including the channel and MotoGP
logos.

PIP This component plays out
‘Picture-in-Picture’ video with
surrounding overlay graphics on
the TV emulator or companion
device. This component uses an
instance of either the Video or
Video Panorama component

In the MotoGP DMApp, Picture-in-
Picture video streams can be
overlaid on part of the main race
video on the TV emulator. Multiple
video streams can also be shown
on the tablet companion device.

https://gitlab-ext.irt.de/2-immerse/client-api/blob/master/doc/component-params.md

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 60 (of 99) © 2-IMMERSE Consortium 2018

Name Description Comments

depending on the media type.

Video Panorama This component is an interactive
360 degree video player which
plays out panoramic videos on
the TV emulator or companion
device.

In the MotoGP DMApp, 360 degree
video is available for one of the on-
board cameras during the live race
and is presented in the same way
as Picture-in-Picture video streams.
The video can be interactively
panned on the companion display,
and when shown on both the TV
emulator and the companion
simultaneously, the view position
will be synchronised between the
two devices.

Leaderboard This presents the MotoGP
leaderboard on the TV Emulator,
indicating the current position of
each rider in the race, and
highlighting changes as the race
progresses.

In the MotoGP DMApp, the
Leaderboard component is overlaid
on the main race video. The
position of each rider is
determined by live data provided
by the Data Spooler component.
The Leaderboard presentation is
also determined by the
Presentation Style and TV Graphics
Scale selected by the user. In
addition, it can be arbitrarily
triggered to show gap times
between any two riders.

Laps Remaining This graphic presents the number
of laps remaining, changing as the
race progresses.

In the MotoGP DMApp, the
number of laps remaining is
determined by live data provided
by the Data Spooler component.

Replay This component presents a replay
of a race event on the TV
emulator, including a sequence of
graphics and video clips.

In the MotoGP DMApp, this
component may be triggered by
the pre-authored timeline to
display replays during the race, or
interactively by selection of an
event in the Companion Control
Panel during or after the race.

Companion Stats This presents a table of lap time
statistics for each rider on the
tablet companion device.

In the MotoGP DMApp, the
contents of the table are
determined by live data provided
by the Data Spooler component.
Part of the table highlights
statistics for a favourite rider if one
has been selected by the user.

Companion Control
Panel

This component presents an
interactive control panel on the
companion device which enables

In the MotoGP DMApp, the
companion control panel can be
switched between three different

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 61 (of 99)

Name Description Comments

user interaction with MotoGP
content.

modes during the race:

Leaderboard – which indicates the
position of each rider in the race
and allows the user to view
additional information about each
rider through a swipe-able ‘card’
view which can be shown or
hidden beneath each rider’s name.
The position of each rider and
other information is determined by
live data provided by the Data
Spooler component. The ‘card’
view also offers a video stream
from the rider’s on-board camera,
if available.

Events – which provides a list of
notable events which have taken
place during the race so far and
allows the user to replay them on
demand.

View – which provides a list of
available video streams which can
be displayed on the tablet
companion device and optionally
‘cast’ to a Picture-in-Picture view
on the TV emulator.

When the race is finished, only the
Events mode is available.

Companion Panel
Switcher

This presents an interactive menu
on the companion device which
enables the user to select
between the different modes
offered by the Companion
Control Panel component,
showing which mode is currently
selected.

Companion Top Bar This presents a title bar on the
companion device which includes
the current status of the DMApp
and provides an interactive drop-
down menu to customise and
control the experience.

In the MotoGP DMApp, the drop-
down menu enables the selection
of TV Graphics Scale, Presentation
Style, Audio Presentation and
Favourite Rider.

Inside MotoGP Panel This component is a self-
contained interactive video-on-
demand player for the
companion device which enables

In the MotoGP DMApp, this
component is presented during the
build-up stage before the race
starts and allows multiple users to

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 62 (of 99) © 2-IMMERSE Consortium 2018

Name Description Comments

the user to browse and watch
different video clips.

independently watch different
video clips taken from three
categories: Tutorial, Technical and
Catch-up.

Companion Notification This presents a pop-up message
on the companion devices to
inform the user of important
information.

In the MotoGP DMApp, this
component is displayed at specific
times before the race as
determined by the pre-authored
timeline, for example to remind
users to select their favourite rider,
or to signal that the race is about
to start.

Adobe Animate This is a generic component
which supports the playback and
control of a JavaScript-based
animation exported from Adobe
Animate.

Several MotoGP-specific
animations were developed using
Adobe Animate and derived from
this component. These are listed
below. The information presented
in many of these components is
determined by live data provided
by the Data Spooler component.

These components are designed to
momentarily provide additional
information overlaid on the main
race video at specific times during
the race, as determined by the pre-
authored timeline.

Info-Rider This animation indicates that a
specific rider is currently featured
in the main race video.

Leading-Group This animation indicates that the
current race video is showing the
leading group of riders.

Info-Onboard This animation indicates that the
current race video is showing the
on-board camera from a specific
rider.

Battle For This animation indicates that the
current main race video is
showing the battle for a specific
position in the race.

Battle For Multi This animation provides more
information on the battle for a
specific position in the race,
especially when more than two
riders are involved.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 63 (of 99)

Name Description Comments

Lap-Comparison This animation provides a
comparison between the lap
timings of two specific riders.

Multi-Lap-Comparison This animation provides a
comparison between the lap
timings of multiple riders over
multiple laps.

Radar This animation provides a
graphical representation of the
race circuit and the positions of
the riders on it.

Split This animation shows the
distance (time gap) between two
specific riders.

Fastest Lap This animation indicates that a
new fastest lap has been
recorded, providing rider and
timing details.

Info-Crash This animation indicates that a
crash has taken place and
provides information about it.

Info-Incident This animation indicates that an
incident (other than a crash) has
occurred during the race and
provides information about it.

Info-Championship This animation provides a ‘live’
view of the current top positions
in the MotoGP championship
table, based on the riders’
positions in the race at that time.

Info-Result This animation confirms the
winner of the race.

Info-Standings This animation shows the current
top positions in the MotoGP
championship table.

TV Control This component changes
configuration options on the TV
emulator in response to updates
from the timeline service. These
include whether user-controlled
Picture-in-Picture components
are enabled, and hiding some
graphical elements during Race
Review and Inside MotoGP

This is a non-displaying
component.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 64 (of 99) © 2-IMMERSE Consortium 2018

Name Description Comments

modes.

Spooler This is a data spooler component
which enables live data to be
distributed to DMApp
Components which require it.

This is a non-displaying
component.

See section 6.2.2 for more details
of this component and propagation
of MotoGP data between
components.

Google Analytics This component aggregates user
interaction events generated by
other DMApp Components and
sends them to Google Analytics.

This is a non-displaying
component.

IoT Data Fetcher This component enables live data
to be received from the Data
Playback Service.

This is a non-displaying
component.

Table 5 - DMApp Components

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 65 (of 99)

8 Production Tools

Recent technical advances make authoring and broadcasting of object-based multi-screen
experiences possible. Most of the efforts to date, however, have been dedicated to the delivery and
transmission technology (such as HbbTV 2), and not to the production process. Media producers face
the following problem: there is a lack of tools for crafting interactive productions that can span
across several screens. Our intention is for 2-IMMERSE to contribute appropriate and adequate
production tools for object-based multi-screen experiences that can reshape the existing workflow to
accommodate the new watching reality. In 2-IMMERSE we have followed an iteratively user-centred
process (interviews and focus groups, early prototypes), involving the potential users since the
beginning, as reported in deliverable D3.3. Our process has led to the definition of three main tools:

1. A multi-screen scripting editor for pre-production and planning the experiences.
2. A near-live event editor for reducing the workload during live broadcasting by providing

templates for certain events.
3. A live triggering tool with which the director can trigger in real-time the right events.

Figure 22 includes a visualisation of the tools and the workflow.

During year two we have given priority to the live triggering tool intended for the MotoGP scenario,
which is now a working prototype integrated with the 2-IMMERSE platform. The pre-production tool
is still under development, with most of the components of the frontend ready, and missing certain
functionality in the backend.

Figure 22 - The Production Workflow as envisioned by 2-IMMERSE

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 66 (of 99) © 2-IMMERSE Consortium 2018

8.1 Architecture and Workflow

In order to implement the tools (pre-production and live triggering), we have devised the following
architecture, divided into the following components (see Figure 23):

 Authoring backend: Acts as point of interaction between the frontend, the database and the
rest of the 2-IMMERSE infrastructure. This layer is comprised of an HTTP server written in
Python, enhanced with the ability to manage timeline documents and communicate with the
Timeline service and receive/forward editing operations to it.

 Pre-Production Authoring frontend: The pre-production frontend enables the user to create
interactive multi-screen experiences. It is implemented as a web application and is largely
self-contained in that it only talks to the backend for storing experience data. All other
business logic is implemented on the client side.

 Live Triggering Authoring frontend: The live triggering frontend tool is a particular part of
the application which takes existing timeline documents, containing specially-annotated
sections to facilitate the real-time insertion of events into a running timeline. In other words,
this tool enables the user to load a document, play it and trigger predefined sequences of
events at will in the running experience.

A production tool instance also includes a full Client Application stack, used for preview play during
pre-production and to deliver the experience to the end users during live triggering. The following
figure shows the full architecture of the production tool.

Figure 23 - Architecture of the Production Tools

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 67 (of 99)

8.2 Document Format

The production tool document format is the same as the timeline document XML format (see D2.2
(2) and D2.3 (3)) with some additional sections added to encode information on triggerable events,
layout, and playback device parameters. For this release, with the live triggering tool fully
implemented, the latter two simply store the layout.json and client.json documents almost verbatim
inside the XML.

Triggerable events are standard timeline XML elements, using the standard timeline parallel and
sequential composition and ref and update elements to control the media components. The main
differences between a triggerable event and a normal timeline chapter are as follows:

 Triggerable events are stored in the document in such a way that the Timeline service
ignores them during normal execution;

 Each event has a set of parameter elements that outlines which information has to be
provided by the live triggering tool operator before the event can be triggered, and where
this information needs to be stored in the event parameters (duration attributes, URLs for
media items, text for labels, etc.).

It is important to note that the production tool document format is 100% compatible with the
Timeline service. At any time during the production workflow, which could last for weeks or even
months, the unfinished document can be previewed using the normal 2-IMMERSE platform. This
allows judging the current state of production work in diverse settings.

8.3 Frontend

8.3.1 Overview

The frontend forms the main point of interaction for the user. It is implemented as a rich browser
application, which invokes the feel of a native desktop application. The UI has been developed based
on initial requirements by means of an iterative process with media production experts (see
deliverable D3.3 (6)). A series of candidate prototypes has been created and evaluated to put
together a final UI prototype, which shall be implemented to completion. For this, a series of detailed
UI sketches was required, which outline every piece of functionality desired to appear in the final
application.

This final application shall provide an event-based way of creating interactive media presentations.
This is different from timeline-based editing in that it does not provide frame-accurate editing
support. As already explained, frontend development for the second release has focused on the
delivery of the live triggering tool UI to support the trial of the MotoGP service prototype.

To implement a rich web application, the frontend employs the frontend library React (35)
developed by Facebook and in use in Facebook Chat and Instagram. It provides a component-based
way of structuring the application. Each part of the user interface is defined in terms of a component,
which can then be used and reused much like a standard HTML tag inside the application.
Furthermore, these components can receive configuration parameters from parent components and
manage their own internal state and potential child components. Data flow within the application is
strictly unidirectional from parent to child components. This provides the assurance that each piece
of data is kept consistent within the entire application and there is a single authoritative source of
truth. In order to manage global application state within the UI during the editing process, the
supplementary library Redux is used, which implements a simplified version of the Flux paradigm
recommended by Facebook for the use together with React.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 68 (of 99) © 2-IMMERSE Consortium 2018

Further, in order to aid with the development of this rather complex UI application, the project
employs the use of TypeScript (25). TypeScript is a superset of conventional ES6 JavaScript developed
by Microsoft with the added benefit of a strong type system. Compile-time type checking erases a
source of bugs introduced by JavaScript's weak dynamic typing.

React and TypeScript cannot be run by any browser natively and thus require a build toolchain to be
put in place. This facility is provided by Webpack, a pluggable module bundler. It invokes the
TypeScript compiler, which checks all types in the application, resolve modules and imports and then
convert the React components to optimised JavaScript code and bundle them into a single file.

In order to take the most advantage of the existing 2-IMMERSE infrastructure, the frontend directly
generates timeline documents, which can be interpreted and played by the Timeline service, thereby
providing the most convenient way for previewing experiences during and after the creation process.

8.3.2 Pre-production Tool

The pre-production tool consists of four stages. The first one (see Figure 24) allows the user to add
preview screens in various sizes and orientations. These screens can then be subdivided into regions
through clicking. These subdivided regions then provide a space for DMApp Components be loaded
into.

Figure 24 - Defining Layouts with the Pre-Production Tool (wireframe)

Once the user is content with their screen arrangement, the next step in the workflow (see Figure
25) is the creation and assignment of master layouts. A master layout in the context of the authoring
platform is a set of DMApp Components assigned to screen regions, which are active all through the
lifetime of said master layout. Here, the user can select preview screens created in the previous step
and assign DMApp Components to screen regions through a drag and drop mechanism. The idea of
these master layouts is very much akin to the concept of master slides in presentation software like
Microsoft PowerPoint.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 69 (of 99)

Figure 25 - Adding Resources with the Pre-Production Tool (wireframe)

The next step in the workflow (see Figure 26) is the actual authoring of the experience. In this case,
this is presented as a tree of chapters. A chapter in this context is a self-contained piece of the final
timeline, i.e. in a theatre performance the chapters might be pre-show, first act, intermission and
second act. Moreover, chapters can have sub-chapters. This becomes important when assigning
master layouts to chapters. For instance, one could create a master layout for displaying the
broadcaster logo in the top right of the screen and create one root chapter with three sub-chapters
constituting the actual experience. To display the broadcaster logo throughout the entire experience,
one can assign the master layout with the logo to the root chapter and the application will apply the
same layout to all sub-chapters.

Figure 26 - Creating the Timeline with the Pre-Production Tool (wireframe).

After designing the chapter layout of the experience and assigning master layouts to chapters, the
user can edit individual aspects of each chapter by simply clicking on a chapter. This puts the user
into an interface which is very similar to conventional timeline-based video editors. The user can add
multiple timeline tracks per screen region and add DMApp Components to these regions by drag and
drop, much like in the master layout creation step. The key difference here is that the user can fine-
tune the arrangement, timing and length of components on multiple timeline tracks.

8.3.3 Live Triggering Tool

Another part of the workflow includes real-time injection of prepared pieces of timeline into a
running experience (see Figure 27). For this purpose, the live triggering tool was implemented. With
it, the user can start a new experience using an existing timeline document. This document should

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 70 (of 99) © 2-IMMERSE Consortium 2018

contain a normal timeline, but in addition to that a series of events, which can be triggered while the
presentation is running. These events are nothing more than timeline elements with DMApp
components and timing arrangements, but they are only played back when the user chooses to. An
example use case for this might be triggering the replay of a crash during a motor race. The general
format of such a replay will be known beforehand, but we cannot know if and when a crash occurs
and which cars or bikes will be involved. Therefore, the user can fill out the relevant information and
trigger the event once a crash occurs.

Figure 27 - Live Triggering Interface

Upon loading the timeline document, the live triggering tool scans the document for event
definitions, parses them and displays them to the user as a list. Generally, an event can have any
number of parameters. These parameters include text to display, numbers, list or external URLs to
fetch data from. Parameters may be optional or required for the event to be triggerable. Once an
event is triggered, the application relays the information to the backend server, which in turn will
inform the Timeline service, which then actually inserts the event data structure at the current point
in time in the running experience. After that, the triggered event will be displayed in a second list of
events, those which are currently active. From this screen, the user can deactivate and/or edit active
events at any time.

Once the experience has fully played out, the generated document, including all events that may
have been triggered during the playout is available for download and can be replayed like a normal
timeline document with the triggered events inserted into the timeline.

8.4 Backend

The authoring tool backend is a REST-like service implemented in Python, using the Flask application
framework. The backend supports multiple independent documents being edited at the same time.
For this release, the backend completely implements the functionality needed by the live trigger tool.
The functionality needed for the preproduction tool will be implemented for the next release.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 71 (of 99)

When a new session is started the backend will create the timeline, layout and client documents
from the production document. A preview player is started (consisting of one or more clients and a
timeline and layout service instance) and provided with the documents (thick blue arrows in the
architecture diagram). The timeline service is informed it is part of a production toolchain, and it will
send updates to the authoring backend informing it as the experience progresses. These updates
consist of information such as “element X has started playing” and these allow the backend to
maintain state information on individual components and elements (and where in the timeline the
experience currently is).

The trigger tool frontend is given a list of the available events and their parameters, which it presents
to the user (the producer, or trigger tool operator). When the user triggers an event to go live the
front end sends this command to the backend. The backend determines where in the timeline the
event needs to be inserted, finds the XML snippet that corresponds to the event and updates its
internal document by inserting a copy of the event with the parameters filled in at the right location
in the document. These XML document modifications are then forwarded to the timeline service,
which inserts them into the running timeline, which then changes the experience as seen by the user
(see Section 5.1). This implementation, together with the update mechanism outlined previously,
essentially ensures that the authoring backend and the timeline server have identical copies of the
document, and an identical view on the current execution state.

The backend can forward operations to multiple timeline service instances, thereby potentially
changing the experience in all homes that are watching the experience concurrently. As the
modifications are also made to the backend instance of the document, with all the right timing
information, when that document is saved and later played back in a “normal” 2-IMMERSE playout
setup, the triggered events happen at the right time in the experience.

There is a separate control flow channel from the frontend via the backend to the clients, to allow
the trigger tool operator to pause and resume playback and scrub the main video. These are not
intended for true live use of the trigger tool, but very useful in near-live editing, to do frame accurate
insertion of events.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 72 (of 99) © 2-IMMERSE Consortium 2018

9 Conclusion

This document has described the second release of the 2-IMMERSE Distributed Media Application
Platform, Multi-Screen Experience Components and Production Tools that have been developed for
the project’s MotoGP service prototype. To recap, the highlights of this second release have
included:

 Extension of first release platform to include new services, and extend existing services to deliver
functionality required by the MotoGP service prototype. New services include Auth and Auth-
admin, Data Playback, Bandwidth Orchestration and the Editor services.

 Migration of the service platform from a private cloud environment to Amazon Web Services
(AWS) and then subsequently migration from the Mantl container platform to Rancher.

 Development of Linux-based HbbTV2.0 Emulator firmware to run on Intel NUC devices to
support service prototypes. Key features include Onboarding, Integrated Wi-Fi router/access
point, HbbTV2.0 and the Web Kiosk.

 Client API developments and improvements.

 Authoring and development of the MotoGP service prototype DMApp, and its constituent
elements: timeline, layout, HTML and CSS documents, several DMApp components with a focus
on data-driven animated graphics, and media asset preparation.

 Production tool development with a focus on the real-time triggering required for the MotoGP
scenario

As the second instance of a working platform for the delivery of an interactive, object-based multi-
screen experience, it forms the foundation for the remaining service prototypes which will be
developed and taken to trial in the final year of the project. The additional services and service
capabilities, DMApp components and the HbbTV emulator will all be reused (and improved) in the
remaining Football at Home and Theatre in Schools service prototypes.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 73 (of 99)

10 References

1. 2Immerse. D2.1 System Architecture. 2016.

2. —. D2.2 Platform-Component Interface Specifications. 2016.

3. —. D2.3 Distributed Media Application Platform and Multi-Screen Experience Components:
Description of First Release . 2016.

4. —. D4.4 Prototype Service Descriptions – Second Update. 2018.

5. ISO/IEC 23009-5:2016: "Information Technology — Dynamic adaptive streaming over HTTP
(DASH) — Part 5: Server and network assisted DASH (SAND). ISO/IEC. 2016. 23009-5:2016.

6. 2Immerse. D3.3 User Interaction Design: the development of generic components & features to
inform MotoGP Service Trials, Production Tools, and OnBoarding. 2017.

7. —. YouTube 2Immerse Channel. YouTube. [Online] [Cited: 10 January 2018.]
https://www.youtube.com/channel/UCpGa5NU1Bbj8Nkz0vZi7IwA.

8. mantl.io. mantl.io. [Online] [Cited: 10 January 2018.] http://mantl.io/.

9. rancher.com. rancher.com. [Online] [Cited: 10 January 2018.] http://rancher.com/.

10. consul.io. consul.io. [Online] [Cited: 10 January 2018.] https://www.consul.io/.

11. influxdata.com. influxdata.com. [Online] [Cited: 10 January 2018.]
https://www.influxdata.com/.

12. mongodb.com. mongodb.com. [Online] [Cited: 10 January 2018.] https://www.mongodb.com/.

13. Registrator. Registrator. [Online] [Cited: 10 january 2018.]
http://gliderlabs.github.io/registrator/latest/.

14. logspout. github.com. [Online] [Cited: 10 January 2018.]
https://github.com/gliderlabs/logspout.

15. tyk.io. tyk.io. [Online] [Cited: 10 January 2018.] https://tyk.io/.

16. traefik.io. traefik.io. [Online] [Cited: 10 January 2018.] https://traefik.io/.

17. prometheus.io. prometheus.io. [Online] [Cited: 10 January 2018.] https://prometheus.io/.

18. GitLab Runner. gitlab.com. [Online] [Cited: 10 January 2018.] https://docs.gitlab.com/runner/.

19. kibana. elastic.co. [Online] [Cited: 10 January 2018.] https://www.elastic.co/products/kibana.

20. letsencrypt.org. letsencrypt.org. [Online] [Cited: 10 January 2018.] https://letsencrypt.org/.

21. Logstash. elastic.co. [Online] [Cited: 10 January 2018.]
https://www.elastic.co/products/logstash.

22. mattermost.com. mattermost.com. [Online] [Cited: 10 January 2018.]
https://about.mattermost.com/.

23. sensuapp.org. Sensu. [Online] [Cited: 10 January 2018.] https://sensuapp.org/.

24. uchiwa.io. uchiwa.io. [Online] [Cited: 10 January 2018.] https://uchiwa.io/.

25. typescriptlang.org. typescriptlang.org. [Online] [Cited: 10 January 2018.]
http://www.typescriptlang.org/.

26. Layout Service Documentation. 2Immerse Origin. [Online] [Cited: 10 January 2018.]
https://origin.platform.2immerse.eu/docs/layout-service/ .

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 74 (of 99) © 2-IMMERSE Consortium 2018

27. OAuth 2.0. oauth.net. [Online] [Cited: 10 January 2018.] https://oauth.net/2/.

28. 2-IMMERSE Auth Service API documentation. 2Immerse origin. [Online] 10 January 2018.
https://origin.platform.2immerse.eu/docs/auth-service/latest/.

29. Quadratic knapsack problem. wikipedia.org. [Online] [Cited: 10 January 2018.]
https://en.wikipedia.org/wiki/Quadratic_knapsack_problem.

30. A Dynamic Programming Heuristic for the Quadratic Knapsack Problem. Franklin Djeumou
Fomeni, Adam N. Letchford. s.l. : INFORMS, 22 July 2013, INFORMS Journal on Computing.
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2013.0555.

31. Approximation of the Quadratic Knapsack Problem. Ulrich Pferschy, Joachim Schauer. s.l. :
INFORMS, 5 April 2016, INFORMS Journal on Computing.
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2015.0678.

32. —.Taylor, Richard. 1, January 2016, Operations Research Letters, Vol. 44. http://dblp.uni-
trier.de/pers/hd/t/Taylor:Richard.

33. Exact Solution of the Quadratic Knapsack Problem. Informs Journal on Computing. Caprara,
Alberto & Pisinger, David & Toth, Paolo. s.l. : INFORMS, October 1998, INFORMS Journal on
Computing.

34. David Pisinger's optimization codes . diku.dk. [Online] [Cited: 10 January 2018.]
http://www.diku.dk/~pisinger/codes.html.

35. React. reactjs.org. [Online] [Cited: 10 January 2018.] https://reactjs.org/.

36. bbc/pydvbcss. github.com. [Online] 10 January 2018. https://github.com/bbc/pydvbcss. .

37. Apple's secret "wispr" request. blog.erratasec.com. [Online] 10 January 2018.
http://blog.erratasec.com/2010/09/apples-secret-wispr-request.html#.WUbAxvryuAw.

38. Captive portal popups: the definitive guide [closed]. serverfault.com. [Online] [Cited: 10
January 2018.] https://serverfault.com/questions/679393/captive-portal-popups-the-definitive-
guide .

39. Quick and dirty captive portal with dnsmasq. reddit.com. [Online] [Cited: 10 January 2018.]
https://www.reddit.com/r/darknetplan/comments/ou7jj/quick_and_dirty_captive_portal_with_d
nsmasq/ .

40. Chromium Beta branch. launchpad.net. [Online] [Cited: 10 January 2018.]
https://launchpad.net/~saiarcot895/+archive/ubuntu/chromium-beta.

41. List of Chromium Command Line Switches. Peter Beverloo. [Online] [Cited: 10 January 2018.]
https://peter.sh/experiments/chromium-command-line-switches/.

42. Chrome remote debugging doesn't work with IP. stackoverflow.com. [Online] [Cited: 10
January 2018.] https://stackoverflow.com/questions/6827310/chrome-remote-debugging-doesnt-
work-with-ip.

43. HDMI 2.0 vs 1.4: What’s the difference? Read more at
http://www.trustedreviews.com/opinion/hdmi-2-0-vs-1-4-2913356#MElTQpycTAlU5Eut.99.
trustedreviews.com. [Online] [Cited: 10 January 2018.]
http://www.trustedreviews.com/opinion/hdmi-2-0-vs-1-4-2913356#UeixwjfXgh3zvDbQ.99.

44. Intel NUC. archlinux.org. [Online] [Cited: 10 January 2018.]
https://wiki.archlinux.org/index.php/Intel_NUC.

45. Universal Windows Platform documentation. microsoft.com. [Online] [Cited: 11 January 2018.]
https://docs.microsoft.com/en-us/windows/uwp/.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 75 (of 99)

46. Microsoft HoloLens. microsoft.com. [Online] [Cited: 11 January 2018.]
https://www.microsoft.com/en-gb/hololens.

47. ExoPlayer. google.github.io. [Online] [Cited: 11 January 2018.]
http://google.github.io/ExoPlayer/.

48. 40 MHz Channels. Metageek. [Online] [Cited: 10 January 2018.]
https://support.metageek.com/hc/en-us/articles/204490510-40-MHz-Channels.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 76 (of 99) © 2-IMMERSE Consortium 2018

 Synchronisation Service (Inter-Home Sync) Annex A

A.1 Limitations of current synchronisation approaches in 2-IMMERSE

A.1.1 Intra-Home Synchronisation with DVB-CSS

DVB-CSS (HbbTV 2.0’s media-sync mechanism) has been designed primarily for the purpose of media
synchronisation between a master device such as a TV and companion devices, all residing on the
same local-area network. The DVB-CSS media sync model relies on assumptions such as a strict
hierarchical organisation of devices (master/slave) and the establishment of a common WallClock via
UDP-based time-synchronisation protocols. These do not lend well to a more distributed
environment where hierarchical master-slave device organisation and end-to-end UDP support
cannot be assumed.

A.1.2 Inter-Home Synchronisation via DMApp’s timeline correlation to a shared
WallClock

An experience timeline (or DMApp timeline) is created as a result of the main DMApp component
starting media playback on the master device. This timeline is used by the Timeline Service to
schedule the loading/unloading of DMApp components at specified times during the experience. For
accurate DMApp scheduling, a common timeframe is established in the form of a shared WallClock
against which times on the DMApp timeline are correlated. The shared WallClock is provided by the
WallClock service which provides a time-synchronisation to enable devices to maintain a local
WallClock that is synchronised to a global WallClock. Inter-destination (or inter-home)
synchronisation is achieved by the master device sharing a Correlation Timestamp with other devices
via the Shared State Service

The Correlation Timestamp tuple consists of the following:

{wallclock-time, dmappc-time, speed}

and is sent by the master Client API instance upon changes in the correlation (e.g.
DMAppComponent is paused).

There are a number of disadvantages with this approach:

1) The model for inter-context synchronisation is not easily reusable, requires developer
participation and fits specific use cases only.

2) Synchronisation responsibility is put on the Client API; this Client API’s functionality is getting
increasingly complex and the current approach does not achieve a good separation of concerns.

3) The current synchronisation model assumes that WallClock Service and Timeline Service
instances share an NTP-Synchronised common clock. NTP was however not designed to run in
microservice environments; it cannot be assumed that containerised services have access to an
NTP_synchronised system clock.

4) The current model relies on clients to initiate an experience timeline; this model suits distributed
experiences that use on-demand content exclusively. It may not readily be applicable for
synchronisation to live content.

A.2 Proposed Synchronisation Model

We propose a new synchronisation model where the synchronisation functionality is hoisted to the
cloud and timelines become first-class entities i.e. timelines can be produced or consumed by
different devices or services.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 77 (of 99)

A.2.1 Multiple Timelines and Timeline Channels

The Synchronisation service allows devices/services to register timelines; these timelines can be
media-based (e.g. a video playback on a particular device), or artificial (e.g. an experience timeline
created by a service orchestrating the experience). In addition to timeline registration and discovery,
the model introduces the concept of timeline channels where devices can stream updates about
their timeline progress. Devices and services can thus discover timelines dynamically and subscribe
to a timeline channel to obtain a local estimate of that timeline. The synchronisation mechanism is
still underpinned by a shared WallClock (provided by the WallClock Service). Timeline channel stream
updates are in the form of Presentation Timestamps (in DVB-CSS terminology):

 {timeline-time, wallclock-time, speed}

A.2.2 Resilience to disconnections via Timeline Shadows

In distributed media experiences, network disconnections or application failure can result in a
device’s timeline to be become unavailable. If this device provides the master timeline that driving
the whole experience, the results can be potentially disastrous. In the first and second 2-IMMERSE
platform releases, the experiences are vulnerable to poor network performance and
device/application failures. An experience will be broken and become unresponsive to timeline
changes if the DMApp timeline originated by a master DMApp Component becomes unavailable
when the DMApp Component’s host device dies.

The Synchronisation service borrows the notion of Device Shadows from the IoT domain to provide
Timeline Shadows.

A timeline shadow is the local estimate of a remote timeline’s state usually in the form of a
software clock object.

A timeline shadow is kept up-to-date by periodically refreshing its state when the source timeline
publishes an update via its channel.

Figure 28 - Timeline Shadow - estimate of a remote Timeline as a clock object

The new Synchronisation service therefore allows devices to discover a relevant timeline and request
for its timeline shadow to be made available. Figure 28 above illustrates a scenario where a device

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 78 (of 99) © 2-IMMERSE Consortium 2018

(Device 1) publishes a timeline and that timeline is discovered by Service A and Device 2, and
manifested as shadows locally (as software clock objects).

Timeline shadows are estimates of a timeline’s state and each state update contains an error-value
and an error growth-rate originating from the process the state update (Presentation Timestamp)
was obtained. A timeline shadow’s state contains the Presentation Timestamp, error-value and error
growth rate of the last update.

If a timeline shadow ceases to be updated (as a result of the source timeline disappearing - e.g. host
device dies), the timeline shadow is said to remain true until the error proportion of the timeline’s
reading exceeds a specified threshold.

One can specify different error growth rates to adjust the rate at which timeline shadows are
rendered stale when the source timeline becomes unavailable.

A.3 Architectural Overview

The Synchronisation service uses the concept of sessions to differentiate between different
synchronisation groups. This is analogous to the notion of sessions shared by experience
establishment and control services in the 2-IMMERSE platform. This allows the service to dedicate
resources to individual sessions such as sync-controllers, session- and timeline- channels. Sessions
also act as a scoping mechanism for timelines and timeline channels. Devices can only discover
timelines and access channels for timelines registered in their session. The end of a session (when
the last device leaves) allows the resources to be recovered automatically by the service.

The Synchronisation service consists of the following components on the server-side:

1) Session Controller,

2) WallClock Service,

3) Sync Controller,

4) a distributed key-value store,

5) Sync Service Channel,

6) One or more Timeline Channels.

On the client-side, the Synchronisation service provides a library API called Cloud Synchroniser. The
architectural organisation of the components is illustrated in the diagram below. The role of each
component is further explained in the following sub-sections.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 79 (of 99)

Figure 29 - Synchronisation Service Architecture

A.3.1 Cloud Synchroniser API

This is a client-side library that provides access to the Synchronisation service functionality to
application instances in an immersive distributed media experience. The API provides an operation
that allows devices to register with the Synchronisation service and specify their session
membership. Other operations in the API enable devices to register timelines, discover other
timelines, and request a synchronised copy of a timeline to be manifested locally as a clock object.

A.3.2 Sync Service Channel

This is a bi-directional communication channel that is used for on-boarding i.e. for devices wishing to
participate in a synchronisation session to send the join-request.

A.3.3 Session Channel

This is a bi-directional communication channel for devices to send requests to (un)register timelines,
query timelines, subscribe to a remote timeline and monitor content changes on devices.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 80 (of 99) © 2-IMMERSE Consortium 2018

A.3.4 Session Controller

A Session Controller handles requests coming from Cloud Synchroniser API instances for device
registrations, timeline registrations and timeline queries. The component handles requests for
different sessions concurrently. Each session’s state is persisted in the distributed data store.
Multiple session controllers can run concurrently on the same or different host machine.

A.3.5 Sync Controllers

A sync controller is requested by a session controller starting a new session to take on the
synchronisation responsibilities for that session. It runs a synchronisation algorithm that takes one or
more client timelines to produce a session-wide timeline for synchronisation. This timeline is called
the Synchronisation Timeline and should be used by all Cloud Synchroniser API instances to
synchronise the local playback of media/DMApp components. The synchronisation algorithm adopts
a specified strategy in terms of synchronisation bias and timeline control. For example, in an
experience where all devices are slaved to the video timeline of a master device, the Sync Controller
for this session will produce a synchronisation timeline that is the exact copy of the master device’s
video timeline. To improve robustness, a Sync Controller in master-slave mode may switch the
provider of the synchronisation timeline to another device if it is notified about the departure of the
master device. Furthermore, once synchronisation is achieved, a sync controller can enable the
synchronisation timeline to be controlled (pause, seek) by one or more parties, as specified by the
Session Controller.

A.3.6 Timeline Channels

Timeline channels are multicast channels where progress information for each timeline is published.
Timeline progress is signalled in the form of Presentation Timestamps. When client devices query for
a timeline, the Session Controller processing the request will respond by specifying the particular
channel where the timeline’s stream of updates are being published.

A.3.7 WallClock Service

As described earlier, the WallClock Service is used to establish a common time reference for all
devices and services in the platform.

A.4 Implementation

A first version of the Synchronisation service (and its client Cloud-Synchroniser API) has been
implemented by BBC and IRT. This version supports the core features such as device registration,
timeline registration, timeline querying, timeline channels, timeline shadows, sync controllers and
session controllers. The back-end services have been developed using a microservice architecture
pattern. The team is currently evaluating the synchronisation performance of the service and
preparing for integration and deployment in the 2-IMMERSE platform. Future iterations of the
service to add advanced features such as new synchronisation strategies are planned after successful
integration.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 81 (of 99)

 HbbTV2.0 Emulator Components Annex B

This Annex provides details of each of the high-level components of the 2-IMMERSE TV emulator
firmware.

B.1 Operating System

The firmware is based on the latest Ubuntu Server 17.04 .ISO distribution. The software is built and
installed as a Debian package. The firmware is targeted at amd64 devices but is general-purpose
enough to run on i386 and ARM devices too. In fact, it was initially developed for an Odroid single
board computer which uses Amlogic’s ARM-based S905 SoC. The firmware also runs in a virtual
machine using VirtualBox, emulating some Wi-Fi functionality. For service trials, we use a 7th
generation Intel NUC because of the increased performance and stability it offers. For a detailed set
of hardware and firmware requirements, see D3.3, Section 2.4. The firmware is built and distributed
as a hybrid .ISO file. It is based on an Ubuntu Server .ISO but modified to include some additional
Debian packages. The .ISO boots from a USB drive and presents the user with a menu offering them
the choice of either installing the firmware on the target device or installing it into a VirtualBox
virtual machine. The latter option also installs the VirtualBox guest additions and an alternative set of
scripts to emulate a Wi-Fi network inside the virtual machine.

B.2 HbbTV2.0 Emulator Services

The 2-IMMERSE firmware emulates a subset of the HbbTV2.0 features. It runs a DIAL service
(Discovery and Launch) and an ‘app2app’ server providing a local communication mechanism
between devices over web sockets connections.

The firmware also runs a proxy server to allow the Chromium web browser to communicate with a
python library that implements DVB protocols for companion synchronisation (pydvbcss). Web
browsers don’t expose the ability to communicate via UDP, so the DVB protocols can’t be
implemented directly in the browser. This is because the protocols are based on UDP datagrams
which aren’t available in the browser. For more information about the pydvbcss functionality, see
(36)

B.3 On-boarding System

The firmware implements user journeys for network configuration, sign-in, device pairing, experience
discovery and experience launch, but designing a simple user experience is hugely challenging when
there are multiple devices. Complex configuration and setup procedures can be a barrier to the
adoption of the technology, therefore the success of multi-screen experiences depends on how
seamless we can make the setup and launch process.

The on-boarding flow runs in parallel across a number of devices, with some devices assisting others
with the setup. To run a Distributed Media Application (DMApp) across a group of devices, each
member of the group must acquire:

1. An Internet connection
2. A valid access token
3. A unique device identifier
4. A common group identifier (layout context Id)

The firmware works with other devices to negotiate the value of these parameters, using the
touchscreen of tablets and phones for remote keyboard input.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 82 (of 99) © 2-IMMERSE Consortium 2018

B.4 Admin Portal

On boot, the firmware starts a service that displays a locally-served webpage and checks for an
Internet connection. If an Internet connection is detected, it proceeds to load a welcome page from
the CDN via a URL that can be configured and parameterised using the firmware’s admin panel. This
allows developers to repoint the firmware at production, test and edge server environments. It also
allows developers to specify an arbitrary URL for the firmware to load.

Figure 30 - NUC admin page (http://<tv-emulator-ip-addr>:3000/admin)

The entire user interface is hosted on the CDN, with the exception of the initial ‘checking for Internet
connection’ and ‘let’s get connected!’ pages. This allows for rapid iteration of the user experience
without rebuilding firmware. Each page displayed to the user provides instructions for configuring
and launching experiences.

B.5 On-boarding Steps

There are three basic on-boarding steps to successfully launching an experience:

 Plugging in the equipment

 Connecting all devices to the Internet

 Launching/joining an experience

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 83 (of 99)

B.5.1 Plugging in the equipment

Figure 31 - Instructions for connecting the TV Emulator device

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 84 (of 99) © 2-IMMERSE Consortium 2018

B.5.2 Connecting all devices to the Internet

The TV emulator device will display the following message on the TV until an Internet connection is
detected.

Figure 32 - The TV will display this screen when it doesn’t have an internet connection

There are two ways to connect the TV emulator device to the Internet:

1. Via a wired Ethernet cable
2. By configuring a Wi-Fi connection

The default network/route of the wired interface has a lower routing metric than that of the Wi-Fi
interface so it’s chosen in preference by the kernel when routing requests to the Internet. This is
because the wired connection is more likely to deliver a higher quality of service than a Wi-Fi
connection. Using an Ethernet cable is also the easiest way to setup the device because there are
fewer steps for the user to perform.

When using the Ethernet cable to connect to the venue’s router, the TV emulator device will create
its own Wi-Fi hotspot offering phones and tablets a wireless Internet connection that’s potentially1
better than the venue’s existing hotspot.

If it’s not possible to connect an Ethernet cable, the device can be configured to connect to the
venue’s Wi-Fi. In this mode, the device’s own Wi-Fi hotspot doesn’t offer companion devices a
quality of service advantage. So instead, it is used to serve a captive portal page that presents users
with a choice of locally-discovered venue Wi-Fi hotspots to use. A companion device can use this
page to select which of the venue’s Wi-Fi hotspots the TV emulator device should connect to.

This process involves temporarily connecting a companion device to the TV emulator device’s Wi-Fi
hotspot as outlined in the diagram below. The user can repeat the Wi-Fi configuration steps for the
TV emulator device at any time as long as there isn’t an Ethernet cable plugged in. This might be
required if the user changes the venue’s Wi-Fi password.

1
 The Intel Wireless-AC 8265 adapter used by the Intel NUC doesn't support 802.11ac in access point mode,

however 802.11n is supported but only at 2.4GHz frequencies. 802.11n supports two channel widths; 20Mhz
and 40MHz. Channel bonding is used to achieve 40Mhz widths but bonding is not recommended at 2.4GHz
frequencies. This limits the maximum bandwidth between companion devices and the NUC to be about
130Mb/s. For more information about channel widths, see (31).

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 85 (of 99)

Figure 33 - Captive portal based Wi-Fi setup procedure

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 86 (of 99) © 2-IMMERSE Consortium 2018

B.5.3 Launching/joining an experience

Once all devices are connected to the internet, an experience can be launched using the companion
application on a phone or other device. For trial participants, the app is pre-installed on the phone’s
home screen. When run, it prompts the user to sign into a 2-IMMERSE user account by entering
credentials given to them by the trial recruiter.

Figure 34 - Companion app sign-in screen

After successful sign in, the app will scan for running experiences. Initially it won’t find any. The users
are presented with in-app instructions of how to launch a new experience. This involves clicking the
‘+’ button:

Figure 35 - Companion app showing no currently detected experiences

The user is then asked to enter the code displayed on the TV screen. This tells the app which TV to
launch the experience on.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 87 (of 99)

Figure 36 - Entering the TV pairing code on the companion app

Once the experience is running on the TV, the user can add the phone to the experience by choosing
the ‘Join’ button:

Figure 37 - Companion app showing a discovered experience that can be joined

Other devices running the companion app can also join the experience by signing into the 2-
IMMERSE app using the same or different credentials and choosing the ‘Join’ button.

The low-level network interactions between the TV emulator, companion device and authentication
service to achieve pairing are outlined by the following sequence diagram:

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 88 (of 99) © 2-IMMERSE Consortium 2018

Figure 38 - Sequence diagram showing network interactions for TV emulator device pairing

B.6 Network connectivity management layer

The firmware is responsible for monitoring changes in network connectivity resulting from:

a) The Ethernet cable being inserted or removed
b) Users configuring/re-configuring Wi-Fi credentials
c) The venue’s router password being changed or becoming inaccessible

Ethernet cable pulls are detected using a system daemon called ‘ifplugd’. It uses the presence (or
absence) of a carrier signal to determine whether there is currently a wired connection to the
venue’s router. When changes in connectivity are detected, the daemon will bring the corresponding
Ethernet interface up or down which in turn executes custom network management hooks. The
network connection signalling scheme is summarised in the diagram below:

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 89 (of 99)

Figure 39 - Network connection signalling in the 2-IMMERSE firmware

The hooks are simple shell scripts that change the behaviour of the firmware based on whether there
is a wired or wireless connection available. There are two scripts that are executed, represented in
the diagram by the two green boxes.

The first script is used to notify the user of the network connection status in the user interface. It
makes an HTTP POST request to the local web server running on the TV emulator device to inform it
of the up/down phase of each network interface. The web server communicates this information to
the web kiosk (Chromium browser) over a web socket connection, resulting in a status notification to
the user.

The second script is used to switch the behaviour of the TV emulator’s access point from a general-
purpose router to a captive portal and vice versa.

B.7 Integrated Wi-Fi router/gateway and access point

Switching between router and captive portal modes of operation is achieved by changing the
network routing rules (using ‘iptables’). When operating as a router, all incoming packets from the
network interface associated with the access point are redirected to the wired interface and DNS
requests are serviced by the operating system’s DNS resolver on port 53. When configured as a
captive portal, all incoming TCP requests on port 80 are routed to the local web server on port 3000
which serves a captive portal page and all DNS requests on port 53 are redirected to a ‘dnsmasq-ap’
service running locally on port 5353. The ‘dnsmasq-ap’ service resolves all domain names to the IP
address/port of the local web server.

The diagram below shows the wired interface’s if-*.d scripts switching between router and captive
portal configurations. It also shows the three network adapters configured on the TV emulator
device; wlpap0 and wlp58s0 share the same physical Wi-Fi hardware.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 90 (of 99) © 2-IMMERSE Consortium 2018

Figure 40 - Wired interface if-*.d scripts switch between router or captive portal configuration

The Wi-Fi interface wlp58s0 can be in one of two states. It can be configured with valid Wi-Fi
credentials or un-configured. When un-configured, the interface must still be brought up by setting
its configuration to ‘manual’ in order to be able to scan for networks. When connecting to a venue’s
Wi-Fi, wlp58s0 uses the ‘dhcp’ setting to automatically lease an IP address.

Wi-Fi credentials are generated using wpa_passphrase and managed by wpa_supplicant. The Wi-Fi
interface is set back to ‘manual’ if the submitted credentials are incorrect. The firmware stores the
previously configured WPA2 credentials in a configuration file which persists between reboots.

The firmware creates a new virtual interface for the access point (wlpap0) and the ‘hostapd’ daemon
configures the Wi-Fi driver to make the interface behave as an access point. The firmware also
assigns it a static IP address because the router needs to have an IP address on the same subnet as IP
addresses allocated by the router's DHCP server. To route packets between wlpap0 and the wired
Ethernet interface it’s necessary to enable packet forwarding in the kernel.

The firmware derives a unique-ish ESSID name for its Wi-Fi hotspot based on the last four digits of
the MAC address of the wired network interface (en0).

B.8 Captive Portal

The captive portal provides a way to configure the Wi-Fi connection of the TV emulator without the
need to plug a keyboard in. Almost any modern phone, tablet or computer can be used to enter the
Wi-Fi credentials of the preferred access point on behalf of the TV emulator via its captive portal

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 91 (of 99)

page. This doesn’t require any special software to be installed on those devices because it leverages
standard functionality built into their operating systems.

Wi-Fi in hotels and airports usually implement a captive portal web page that asks the user to sign in
and/or accept terms and conditions in order to gain Wi-Fi access. In contrast, the captive portal web
page hosted by the TV emulator presents the user with a choice of Wi-Fi access points with which to
configure the TV emulator’s Wi-Fi.

An alternative approach is to have the user connect to the TV emulator’s Wi-Fi hotspot and type in
the URL of the Wi-Fi configuration page into their web browser. This could be streamlined further by
providing access to the configuration page in the 2-IMMERSE companion application.

B.8.1 Captive Portal Components

A captive portal can be built using components available in Ubuntu 17.04:

1. hostapd – a daemon that turns the Wi-Fi adapter into an access point
2. iptables – for redirecting packets to the captive portal page
3. DNS resolver – for resolving DNS requests to the local web server
4. DHCP server – for leasing an IP address to each companion devices
5. Web server – for serving the captive portal web page

‘dnsmasq’ is a combined DNS/DHCP server which is easy to configure and use. When a computer
connects to an access point, it receives several pieces of information from dnsmasq:

1. An IP address and subnet mask (e.g. 192.168.10.5/24)
2. A broadcast IP address for the subnet (e.g. 192.168.10.255)
3. IP address of the gateway/router (on the same subnet e.g. 192.168.10.1)
4. The IP addresses of one or more DNS servers

After receiving this information, the OS checks to see if there is a captive portal associated with the
access point by requesting a URL. For example, on apple devices the requested URL
is http://www.apple.com/library/test/success.html.

The captive portal detection algorithm can be summarised as follows:

 GET/POST a URL (varies between OS’s e.g. http://www.apple.com/library/test/success.html)

 If ([success.html] == expected content) => It’s an open Internet connection

 If ([success.html] != expected content) => It’s a captive portal

 If (http status code != 200 (i.e. success)) => There’s no network

B.8.2 Captive Portal Detection Request

The URL request starts with a DNS request to one of the DNS servers advertised by the access point.
Access points that implement a captive portal host their own DNS server which resolves all server
names (e.g. apple.com) to the gateway's IP address where a webserver is running. A complementary
approach is to resolve the DNS request as normal, but redirect all TCP traffic on port 80 to the
webserver. This latter approach assumes the DNS server has an Internet connection and can forward
on the DNS request. Captive portals effectively implement a “man-in-the-middle” attack.

http://www.apple.com/library/test/success.html
http://www.apple.com/library/test/success.html

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 92 (of 99) © 2-IMMERSE Consortium 2018

The computer then makes a HTTP request to the resolved IP address to fetch the content. (For
further information, see (37)).

Each operating system uses a different URL to test for the presence of a Captive Portal, see: (38)
All URLs are redirected regardless, so this is only relevant if the captive portal wants to infer the type
of platform making the connection request.

The captive portal webserver always responds with a HTTP redirect (302). This informs the
connecting computer that this is a captive portal and the OS will open a captive portal window
showing the response, which is typically a web page with a login form. If there isn't a redirect, the
user won't be shown a captive portal window. See this article for further information: (39)

Also, iOS expects the redirect URL to contain a domain name, not an IP address. If the redirect URL
is http://192.168.10.1 as opposed to http://myhotspot.localnet it assumes a home network, not a
captive portal. This requires careful configuration of the webserver and DNS server hosted by the
access point.

On Apple devices running iOS, the computer may also expect to be redirected to an XML file instead
containing a <WISPAccessGatewayParam/> XML element. This is a standard referred to
as 'CaptiveNetworkSupport'. The XML element contains the actual redirect URL, but also contains
other information. iOS devices will only show the captive portal window if they receive a Captive
Network Support XML file.

B.8.3 Captive Portal Detection on Samsung Devices

Samsung Android devices (eg. Galaxy S5-S8 smartphones) require all domain names used for captive
portal detection to be resolved to public IP addresses by the DNS server (i.e. not 192.168.10.1). At
the time of writing, this includes:

 connectivitycheck.android.com

 connectivitycheck.gstatic.com

 clients3.google.com

This is a well-documented difference between Samsung devices and other devices running Android.
Samsung appear to perform an additional check on the type of IP address resolved by the DNS
server. Since the TV emulator device might not yet have an Internet connection, we can't forward the
DNS requests for these domain names to an Internet DNS server to be resolved. Consequently, they
need white-listing by the local DNS server so that they are resolved to public-looking IP addresses.
Then HTTP packets need to be routed to the local web server at 192.168.10.1 using ‘iptables’ rules.

B.9 Web Kiosk Service

The web kiosk service has four main components:
1. Chromium – The open-source version of Google Chrome
2. Openbox - A lightweight window manager supporting hints to enable Chromium to run full-

screen
3. X11 - The display server
4. PulseAudio – X11 audio server

The web kiosk runs automatically on boot as a systemd service. It is run as a non-root user with
carefully configured group membership to permit audio and video access. The kiosk server starts
after all other services have started and the system is idle. It depends on a ‘getty’ starting to ensure
X11 can switch virtual terminals without error.

http://192.168.10.1/
http://myhotspot.localnet/

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 93 (of 99)

B.9.1 Chromium

The firmware uses a customised version of Chromium that provides hardware-accelerated video
decoding under Linux. See deliverable D3.3, Section 2.4.5.3 for more details. It is available from the
following personal package archive (PPA):

 ppa:saiarcot895/chromium-beta

See: (40)

Chromium is automatically restarted by the kiosk service if it terminates unexpectedly and is
deliberately restarted when the network configuration of the TV emulator changes. This is because
changes to network state can happen at critical points in time such as during a page load and can
leave the user interface in a partially loaded state from which there is no recovery without manual
intervention.

Chromium is run in incognito mode to ensure it returns to a known good state and to prevent
unexpected behaviour resulting from content/credential caching.

The firmware supports all service trials, including ‘Theatre at Home’ which implements live video
chat. This requires Chromium to run with ‘—disable-web-security’ to stop it prompting the
user for permission to use the web camera and microphone.

Chromium is also configured to allow mixed http and https requests using the ‘—allow-running-
insecure-content’ option. This permits content on the CDN served via HTTPS to communicate
with the local HbbTV2.0 emulation services which are accessed via unencrypted HTTP requests.

Here is the complete command-line invocation of chromium used by the kiosk service:

 chromium-browser

 --incognito –kiosk \

 --window-position=0,0 --window-size=1920,1080 \

 --disable-web-security \

 --allow-running-insecure-content \

 --no-first-run --fast --fast-start \

 --disable-infobars --disable-translate \

 --disable-session-crashed-bubble \

 --enable-gpu-rasterization \

 --remote-debugging-port=9222 'http://localhost:3000/device'

For an extensive list of all Chromium command-line options see: (41)

B.9.2 X11 Server

Usually, the X11 session is started by a display manager. However, when running a single-user
system, display managers are an unnecessary waste of resources. Fortunately, the X11 session can be
started without one. The display manager is responsible for showing a desktop login prompt, so
running without a display manager conveniently eliminates a login step which is undesirable for a
kiosk.

It is preferable to run X11 as a non-root user for added security, but also because Chromium under
X11 won’t run as the root user without specifying the –no-sandbox flag. Unfortunately, this flag

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 94 (of 99) © 2-IMMERSE Consortium 2018

causes a notification bar to appear in the window that must be dismissed by the user, which is no
good for a web kiosk experience.

To run X11 as a non-root user, it is necessary to install the xserver-xorg-legacy package and perform
some additional configuration steps. Also, by default, ‘startx’ can only be run from a console. To
launch it as a systemd service, it has to be configured to run from outside a console.

Other niceties are configured using X11 such as disabling the screen saver, the mouse pointer and
turning off power management signalling. This prevents the Kiosk from going to sleep during
playback of an experience.

B.9.3 Pulse Audio

The kiosk service also runs the PulseAudio Sound Server X11 Startup Script and configures the audio
to output over HDMI, setting the volume level to maximum.

B.10 Creating an SSH tunnel for remotely debugging Chromium

Chromium only accepts connections from localhost for debugging a page. If we want to remotely
debug a page in Chromium from another computer on the network, we must trick Chromium into
thinking the connection is coming from localhost. This is achieved by creating an SSH tunnel that
tunnels requests to port 9223 (from any IP address on the network) to localhost on port 9222". Port
9222 is typically the port used to configure chromium to enable remote debugging.
The firmware starts the SSH tunnel at boot using a systemd service. See the following URL for more
details: (42)

B.11 Web Server

The web server implements the firmware’s control logic. It provides a number of REST endpoints that
other parts of the firmware interact with. The web server also serves rendered content and static
content to display on the TV, within the captive portal page and on the admin portal. The following
list summarises the key responsibilities of the web server:

 Mocks Wi-Fi commands with versions that return static content

 Performs Wi-Fi scanning

 Restarts the kiosk service

 Manages websocket connections to the firmware’s Chromium browser

 Renders HTML templates and serves static content

 Monitors and reports network connectivity

 Implements portions of the on-boarding flow

The web server works in conjunction with nginx. The nginx configuration file implements the majority
of the captive portal HTTP request handling which includes redirects, WISPR header processing and
proxy pass-through to the node.js web server. It also has permissions to use privileged port 80 out of
the box, allowing the node.js web server to run with restricted permissions on port 3000 instead.

B.12 4K/UHD TV Support

The original firmware specification targeted HD TV resolutions, but we quickly discovered that many
trial participants were using 4K TVs. A number of updates to the firmware and the Intel NUC were
required to support 4K TVs.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 95 (of 99)

B.12.1 CPU Overhead

We discovered a large CPU overhead as a result of stretching HD video content to UHD. This was
resolved by enabling GPU rasterisation in Chromium. This also fixed a diagonal tearing problem that
wasn’t seen at HD resolutions. Investigation of CPU overhead also led to the discovery of redraw
optimisations.

B.12.2 Signal Detection

Many 4K TVs weren’t detecting the signal from the Intel NUC. This required a Linux kernel update to
obtain newer Intel graphics drivers and a corresponding BIOS upgrade.

B.12.3 HDMI 2.0 Cable

A HDMI 2.0b cable is required to support 4K output at 60Hz, but some of the cables in use were
HDMI1.4 cables. HDMI 1.4 introduced the bandwidth required to deliver 4K video, but HDMI 2.0 is
required for 4K video at 50 and 60 frames per second. In HDMI 1.4, the rate of 4K was limited to 24
frames per second. HDMI 2.0b cables are marked 'High speed' or 'Category 2'. See: (43)

B.12.4 IGD Memory for 4K

The default IGD Aperture Size on the Intel NUC is 256MB and the IGD Minimum Memory is 64MB.
According to the ArchLinux wiki and other forums, the video memory and aperture size need
increasing to support 4K@60Hz.

“If you want to use 4K graphic output, open the BIOS settings and set Devices and Peripherals ->
Video -> IGD Minimum Memory to 512 MB and IGD Aperture Size to 1024 MB.” - (44)

After the BIOS update, the available options for IGD minimum memory are fewer in number. The
following settings were required for Samsung 4K TVs:

IGD Minimum Memory: 64MB

IGD Aperture Size: 1025MB

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 96 (of 99) © 2-IMMERSE Consortium 2018

 HbbTV showcases, tools and software libraries Annex C

This section provides an overview of the HbbTV 2 showcase applications that have been developed.
After that, it introduces the different tools and software libraries that have been produced for the
use in HbbTV applications (see Section C.2), Android-based (see Section C.3) and Windows-platform-
based (see Section C.4) companion applications. Also, we introduce server-side components,
including a stand-alone tool to generate a media timeline for Transport stream files (see Section C.5)
and a Material Resolution Service (MRS, see Section C.6) for providing metadata on the correlation
between companion streams and DVB services.

C.1 Showcase applications

Showcases included companion applications for the Android operating system and for the Universal
Windows Platform.

C.1.1 Companion applications for the Android operating system

The companion applications for Android have been designed to run on mobile handheld devices, i.e.
Tablet PCs and Smartphones. The apps play back alternative audio tracks (e.g. alternative language or
audio description versions) for a TV programme in sync with the TV content. The Android
applications have been implemented in Java. For synchronisation, the Android applications made use
of the above-mentioned library, which was also subject to major architecture refactoring. Also, they
integrated the MRS client for Android (see Section C.3.1) to retrieve information on the available
companion content and its temporal relation to the TV content. The Clock Adapter for ExoPlayer (see
Section C.3.2) was needed to adapt the video presentation to the time information from the MRS
client and the synchronization library.

C.1.2 Companion application for the Universal Windows Platform

The companion app for Microsoft’s Universal Windows Platform (UWP) (45) was designed for
Microsoft’s augmented reality platform HoloLens (46), though it could be potentially deployed to all
other device classes running UWP compatible operating systems such as Windows 10, Windows 10
Mobile. The HoloLens displayed a sign language interpreter next to a TV set, translating spoken text
of a news magazine on the TV. The UWP provides APIs in different programming languages. The
companion application made use of the UWP’s JavaScript API and the Device Discovery and the
Media Synchroniser for UWP (see Section C.4.2). Also, it made use of the “dvbcss-clocks” and
“dvbcss-protocols” libraries, which was published as open source and the MRS client library for
JavaScript.

C.2 HbbTV client libraries

These client libraries are organised as single separate modules helping to simplify application
development by wrapping recurring tasks involving the HbbTV terminal API.

C.2.1 Wrapper for the HbbTVCSManager manager

The companion screen manager object in HbbTV is used to retrieve service endpoints for app2app
communication and inter-device synchronisation as well as to discover manufacturer-specific
launcher applications on companion screens. The wrapper module provides a few convenience
functions as well as useful constants e.g. for error handling of the launcher discovery.

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 97 (of 99)

C.2.2 Wrapper for the MediaSynchroniser object

Through the MediaSynchroniser object HbbTV apps can handle all new media sync features of HbbTV
2, i.e. inter device synchronisation, multi-stream synchronisation as well as App2AV synchronisation.

C.2.3 Wrapper for the Application manager

This component wraps the application object that is accessed through the oipfApplicationManager
embedded object available on HbbTV implementations. It is used for multiple tasks, it controls the
visibility of the browser, it is used to request and release key events from and to the underlying
terminal, and finally also to start and stop applications. The wrapper module provides some useful
constants and methods around these functions, and it also provides some guidance for implementers
not yet familiar with HbbTV.

C.2.4 MRS client for JavaScript

The MRS client library is used to retrieve material information from an MRS service, tested with the
MRS service described below (see Section C.6), for a given material. It also restructures the info to be
easier consumed by applications.

C.3 Companion screen libraries for Android

C.3.1 MRS client for Android

The MRS client for Android is a Java version of the MRS client for JavaScript (see Section C.2.4).

C.3.2 Clock Adapter for ExoPlayer

The library for HbbTV 2-based companion synchronisation provides information on the TV’s
presentation time in form of a software clock. The companion app has the task of adapting the media
presentation to this clock. Companion apps for our showcases made use of library ExoPlayer (47) for
audio-video playback. ExoPlayer provides an API to pass software clock objects to which ExoPlayer
adapts the playback position of audio or video. An adapter has been implemented which translates
between the ExoPlayer clock format and the format of the clock returned by the synchronisation
library.

C.4 Companion screen libraries for WinJS UWP

C.4.1 Device Discovery for WinJS UWP

A JavaScript library has been implemented for discovery of HbbTV devices via the DIAL protocol. The
library makes use of UWP-specific JavaScript APIs for UDP messaging.

C.4.2 Media Synchroniser for UWP

This component adapts the play position of a video played back by the HTML video element
according to the time information reported by the software clock from the dvbcss-protocols library.

C.5 MPEG TEMI Timeline Inserter

DVB CSS defines the concept of media timelines, the specific timelines for common media types and
how timelines of different types can be correlated. For the HbbTV tests and showcases a tool was
needed to insert a timeline into DVB transport streams, the media format used for DVB broadcast
services, to be able to resynchronise the DVB service with broadband streams for rendering on the

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:

Description of Second Release

Page 98 (of 99) © 2-IMMERSE Consortium 2018

client devices (see also the material resolution service that stores timeline correlations of related
media).

The TEMI timeline inserter works offline and reads a DVB TS file from the local filesystem and writes
the modified file with a TEMI timeline back to disc. The timeline is carried in packets containing
tuples of a presentation timestamp (PTS) and a corresponding timeline value (TEMI) as a separate
component that is ingested into the file/stream by replacing stuffing packets. The initial timeline
value is mapped to the timestamp (PTS) of the first video frame of the selected video component in
the TS found. A new timeline packet is generated by default every second using the most recent
presentation timestamp from the video stream and a corresponding TEMI timeline value.

An experimental implementation for use with Dektec I/O devices with DVB ASI interfaces is included.

The implementation is based on Microsoft (MS) Visual Studio C++ and executables available for MS
Windows.

C.5.1 Example usage

TsProcessor --source in.ts --destination out.ts --add_temi 1 256 255

50 254 9

The above Command Line Interface (CLI) command creates a timeline with a timeline id of 1, the
timeline value for the first frame will be 0, the timeline will run at a timescale of 90000 ticks per
second, timeline descriptors are inserted every second (using default values). The timeline is
generated for the video component that has 50fps and has a PID of 255. The timeline descriptors are
inserted with a PID of 256 and the PMT on PID 254 is updated to signal PID 256 with a component tag
of 9. With a timeline id of 1 and a component tag of 9 the timeline selector for use in HbbTV
becomes urn:dvb:css:timeline:temi:9:1

C.5.2 Command line parameters

Parameter Description

--help show usage information

--source <file path> Path to source file (DVB transport stream)

--destination <file path> Path to destination file. Requires --source

--add_temi <temi id> <temi

pid> <pts pid> <fps> <pmt pid>

<comp tag> [<interval>=90000

[<timescale>=90000

[<startvalue>=0]]]

Add TEMI timeline descriptors.

Generated packets will be generated as a new
component and inserted with PID <temi pid>, using
<temi id> as timeline identifier and <comp tag> for
reference of the TEMI packets from the PMT <pmt
pid>. <fps> is the frame rate of the video component
on PID <pts pid>. The optional arguments timescale
and interval define the tick rate of the TEMI timeline
and the repetition rate (based on timescale) of TEMI
timeline packets.

--live_stream Use Dektec ASI devices as Input and Output.

Experimental.

Can't be used with

D2.4 - Distributed Media Application Platform
and Multi-Screen Experience Components:
Description of Second Release

© 2-IMMERSE Consortium 2018 Page 99 (of 99)

--source or --destination

--parse_timeline <temi pid> Parse TEMI descriptors from a recorded file and print
information to stdout. Use with –source

C.6 Material resolution service

The Material resolution service (MRS) is based on the MRS protocol defined for DVB-CSS as a level of
abstraction between application and content providers. In the HbbTV showcases it is used to store
available companion streams and some metadata like title and type, and most importantly the
correlation of the media timelines of the master media and the companion stream.

The service has two separate interfaces, one public interface that is used by clients to query available
streams and related data, the other one is used to manage this data that is stored in a local database.

The service is implemented as a node.js application. The service APIs are implemented RESTful, API is
implemented and documented using RAML. The internal database is currently file based using the
NEDB npm module. The API of this database is a subset of that of MongoDB, i.e. the database could
be exchanged quite easily if scalability gets a requirement.

C.6.1 Summary of MRS Query API

/v1.1/MRS?contentId=<URL>

Returns the material data currently stored for a content item identified by its content id. Details of
content id and the response format can be found in the DVB CSS specification.

C.6.2 Summary of MRS Mgmt API

/material/{index} Create, update, delete and retrieve material information.

/identifier/{index} Create, update, delete and retrieve identifiers that can be referenced
from materials to identify their types etc.

/timelineInformation/{index} Create, update, delete and retrieve timeline information
that is linked to a particular material, which includes type and parameters of a timeline when it is
used as synchronisation timeline.

/mapping/{index} Create, update, delete and retrieve mappings, which create the timeline
correlation between two materials, typically one being a master media like a DVB service and the
other a companion stream.

