
 

 

 

© 2-IMMERSE Consortium 2018 Page 1 (of 46) 

 

Directorate General for Communications Networks, Content and Technology 

Innovation Action 

 

ICT-687655 

 

 

 

 

 

D2.3 Distributed Media Application Platform and Multi-
Screen Experience Components: Description of First 

Release   

 
 

 

 

Due date of deliverable: 30 Sept 2016 

Date of resubmission (this version): 11 January 2018 

 

 

 

Start date of project:  1 December 2015   Duration:  36 months 

Lead contractor for this deliverable: Cisco 

Version: 11 January 2018 

Confidentiality status: Public



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 2 (of 46)  © 2-IMMERSE Consortium 2018 

Abstract 

This document describes the first release of the 2-IMMERSE Distributed Media Application Platform, 
Multi-Screen Experience Components and Production Tools that have been developed for the 
project’s first service prototype, “Watching Theatre at Home”. It provides an illustrated tour of the 
project’s technical achievements to date, along with details of the current status of the platform and 
components and key features developed beyond those described in deliverables D2.1 and D2.2. 

The description of the first release was originally defined as two separate written reports: D2.3 
(Distributed Media Application Platform: Description of First Release) and D5.1 (Multi-Screen 
Experience Components: Description of First Release). To make the content easier to read and 
navigate, the complete description is now provided in this document, D2.3. Deliverable D5.1 now 
contains a video which shows the 2-IMMERSE Platform and Components in action. 

Target audience 

This is a public deliverable and could be read by anyone with an interest in the details of the system 
architecture being developed by the 2-IMMERSE project. As this is inherently technical in nature, we 
assume the audience is technically literate with a good grasp of television and Internet technologies 
in particular. This document will be used by the Project Consortium as a reference as it develops the 
foundation platform which it describes. 

Disclaimer 

This document contains material, which is the copyright of certain 2-IMMERSE consortium parties, and may not 
be reproduced or copied without permission. All 2-IMMERSE consortium parties have agreed to full publication 
of this document. The commercial use of any information contained in this document may require a license 
from the proprietor of that information. 

Neither the 2-IMMERSE consortium as a whole, nor a certain party of the 2-IMMERSE consortium warrant that 
the information contained in this document is capable of use, or that use of the information is free from risk, 
and accept no liability for loss or damage suffered by any person using this information.  

This document does not represent the opinion of the European Community, and the European Community is 
not responsible for any use that might be made of its content. 

 

Impressum 
Full project title:  2-IMMERSE 

Title of the workpackage:  WP2 Distributed Media Application Platform 

Document title:  D2.3 Distributed Media Application Platform and Multi-Screen Experience 
Components: Description of First Release 

Editors:  James Walker (Cisco) and Ian Kegel (BT) 

Workpackage Leader: James Walker, Cisco 

Project Co-ordinator: Helene Waters, BBC 

Technical Project Leader: Phil Stenton, BBC 

This project is co-funded by the European Union through the Horizon 2020 programme. 

Copyright notice 

© 2018 Participants in project 2-IMMERSE 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 3 (of 46) 

Executive Summary 

The First Release of the 2-IMMERSE Distributed Media Application Platform, Multi-Screen Experience 
Components is based on a practical implementation of the system architecture defined in project 
deliverable D2.1, and the platform component interfaces defined in project deliverable D2.2.  

The first trial to be undertaken by the 2-IMMERSE project is based on the “Watching Theatre at 
Home” service prototype. Technical development has therefore been focused on the prioritised 
requirements of this prototype, as expressed in deliverable D4.1, but it is important to note that the 
majority of the platform elements, multi-screen experience components and production tools 
created so far will be enhanced and used again for subsequent trials.  

The following summarises the key technical achievements of the first release: 

 At the core of the 2-IMMERSE architecture is Mantl, a modern platform for rapidly deploying 
globally-distributed services. It provides an integrated set of industry-standard open-source 
components and can be deployed with a variety of different cloud infrastructure providers. This 
is supported by a basic Origin Server, on which digital content assets, DMApp Components, 
timeline and layout documents are hosted. The project partners are using a set of private 
repositories hosted on a GitLab server to manage development of the platform services, client 
application and DMApp Components. A Continuous Integration/Continuous Development server 
is used to deploy services on Mantl from their GitLab source. 

 The Timeline and Layout Services are unique to 2-IMMERSE and are based on their initial designs 
described in D2.2. The Timeline Service has been enhanced to cater for a varying number of 
companion devices and to schedule future media changes early for a more seamless user 
experience. The Layout Service has been iterated several times with many new features to 
support the user experience requirements of the Theatre at Home prototype, including a more 
efficient API, more flexible specification of layout parameters and an improved model for 
component lifecycle.  

 Lobby and Call Server functions are important elements of the Theatre at Home experience and 
have been integrated into the Websocket Service since some of their functionality was already 
available there. The current implementation provides distinct lobbies for text chat and video chat 
and helps to establish WebRTC peer connections between lobby members. 

 A significant new development has been the deployment of the Shared State Service from the 
FP7 MediaScape project. Its purpose is to provide a repository for key information which must be 
shared between different clients participating in a multi-screen experience. It includes a simple 
notification subscription model, managed through a client API, and reduces the amount of 
bespoke application logic required.  

 A simplified inter-home synchronisation solution has been implemented using the WallClock 
service and the Shared State Service to enable the synchronised start of a Distributed Media 
Application. 

 A flexible logging format has been implemented to allow logs from 2-IMMERSE services and 
client applications to be automatically processed by Elastic Stack component Logstash. The 
Kibana web application has been configured to allow aggregated logs to be filtered, presented 
and analysed for efficient debugging and user experience monitoring.  

 The Distributed Media Application (DMApp) is a collection of applications which are co-ordinated 
to deliver a multi-screen experience within a household. In order to facilitate the re-use of key 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 4 (of 46)  © 2-IMMERSE Consortium 2018 

functionality which is common to all experiences, the application stack implemented on each 
client device is split into multiple layers, including a bootstrapping application, an onboarding 
application and the application responsible for the individual experience (such as Theatre at 
Home).  

 DMApp Components are a way to encapsulate functionality and user interface elements in 
discrete entities which are individually specified and controllable by the Layout Service. They are 
JavaScript objects which as a minimum meet a defined and documented JavaScript interface. 12 
reusable DMApp Components have been developed for the Theatre at Home service prototype, 
and all have been based on the WebComponents web standard. They include components which 
play audio and video, present text and image content and provide real-time video 
communication and text chat. The Component Switcher is a key component which provides a UI 
to enable different parts of the experience (and hence DMApp Components) to be selected. 

 The Bootstrap framework has been used to achieve a consistent look and feel across the Theatre 
at Home DMApp by providing a library of re-skinnable UI elements, a vocabulary of CSS class 
names that describe appearance and behaviour of web content, and styles and behaviours that 
facilitate the implementation of responsive layouts.  

 As fully-implemented HbbTV 2.0 devices are not yet available and it can’t be guaranteed that 
they will be for any of the trials, a TV Emulator device has been developed which implements the 
essential protocols required from the HbbTV and DVB specifications. 

 The authoring process of the Theatre at Home service prototype has been analysed and will 
direct further development of more advanced production tools. However, a combination of off-
the-shelf and bespoke tools have been used to support the authoring process so far, ranging 
from image and text editors to text timing editors and tools to visualise and validate layout and 
timeline documents.  

As the first instance of a working platform for the delivery of an interactive, object-based multi-
screen experience, this First Release forms a vital foundation for the subsequent prototypes which 
will be developed and taken to trial in the next 2 years of the project. 

Note: The description of the first release was originally defined as two separate written reports: D2.3 
(Distributed Media Application Platform: Description of First Release) and D5.1 (Multi-Screen 
Experience Components: Description of First Release). To make the content easier to read and 
navigate, the complete description is now provided in this document, D2.3. Deliverable D5.1 now 
contains a video which shows the 2-IMMERSE Platform and Components in action. 

 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 5 (of 46) 

List of Authors 

Mark Lomas – BBC 

Tim Pearce – BBC 

Rajiv Ramdhany - BBC 

Ian Kegel – BT (co-editor) 

Jonathan Rennison - BT 

James Walker - Cisco (co-editor) 

Jack Jansen – CWI 

Fons Kuijk – CWI 

Michael Probst - IRT 

 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 6 (of 46)  © 2-IMMERSE Consortium 2018 

Table of contents 

 

Executive Summary ...................................................................................................................... 3 

List of Authors .............................................................................................................................. 5 

Table of contents ......................................................................................................................... 6 

1 Introduction ......................................................................................................................... 8 

Terminology......................................................................................................................................... 9 

2 Snapshot of the platform and components .......................................................................... 10 

2.1 Platform Architecture for the First Release .......................................................................... 10 

2.2 2-IMMERSE Wiki .................................................................................................................... 12 

2.3 2-IMMERSE Code Repository (Gitlab) ................................................................................... 12 

2.4 Mantl Services ....................................................................................................................... 13 

2.5 Backend Services ................................................................................................................... 14 

2.6 Timeline and Layout Documents ........................................................................................... 15 

2.7 TV and Companion Client applications for the Theatre at Home trial .................................. 17 

3 Platform Infrastructure ....................................................................................................... 19 

3.1 Mantl ..................................................................................................................................... 19 

3.2 Origin Server .......................................................................................................................... 19 

3.3 CI/CD and Docker Repository ................................................................................................ 19 

4 Platform Services ................................................................................................................ 21 

4.1 Timeline ................................................................................................................................. 21 

4.2 Layout .................................................................................................................................... 21 

4.3 Websocket ............................................................................................................................. 22 

4.4 Shared State .......................................................................................................................... 24 

4.5 Logging and Monitoring ........................................................................................................ 24 

4.6 WallClock Service .................................................................................................................. 25 

4.7 Inter-Home Sync .................................................................................................................... 27 

5 Client Application ............................................................................................................... 30 

5.1 Overview................................................................................................................................ 30 

5.2 Application Logic ................................................................................................................... 31 

5.3 DMApp Component Interface ............................................................................................... 33 

5.4 Styling .................................................................................................................................... 34 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 7 (of 46) 

5.5 HbbTV Emulator and Adapters .............................................................................................. 35 

6 Multi-Screen Experience (DMApp) Components .................................................................. 37 

6.1 DMApp Components available in the First Release .............................................................. 37 

6.2 DMApp Components in the near-term plan ......................................................................... 39 

7 Production Tools ................................................................................................................. 40 

7.1 Design .................................................................................................................................... 41 

7.2 Preparation ............................................................................................................................ 41 

7.3 Creating the Experience ........................................................................................................ 42 

7.4 Evaluation .............................................................................................................................. 43 

8 Conclusion .......................................................................................................................... 45 

9 References .......................................................................................................................... 46 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 8 (of 46)  © 2-IMMERSE Consortium 2018 

1 Introduction 

This document describes the first release of the 2-IMMERSE Distributed Media Application Platform, 
Multi-Screen Experience Components and Production Tools that have been developed for the 
project’s four service prototypes. The platform, components and tools will be continually developed 
but at this stage they have been built to be sufficient for the first service prototype, “Watching 
Theatre at Home” (henceforth referred to as Theatre at Home). 

The description of the first release was originally defined as two separate written reports: D2.3 
(Distributed Media Application Platform: Description of First Release) and D5.1 (Multi-Screen 
Experience Components: Description of First Release). To make the content easier to read and 
navigate, the complete description is now provided in this document, D2.3. Deliverable D5.1 now 
contains a video which shows the 2-IMMERSE Platform and Components in action. 

This first release is a practical implementation of the system architecture defined in project 
deliverable D2.1, and the platform component interfaces defined in project deliverable D2.2. With 
the initial development focus on the Theatre at Home service prototype, platform development has 
been focused on the infrastructure, services and client application to support this service prototype. 
Similarly, the development of Production Tools and Multi-Screen Experience Components has been 
prioritised according to Theatre at Home requirements.  

The deliverable is structured as follows: 

 Introduction - introduces the first release distributed media application platform, and 
explains how the rest of the deliverable is structured. 

 Snapshot of the platform and components – provides a brief visual overview of the First 
Release and the platform architecture implemented to date. 

 Platform Infrastructure – describes the infrastructure deployed to support the 2-IMMERSE 
service platform. 

 Platform Services – describes the core platform services developed and deployed to date and 
their current status. 

 Client Application – describes the client application stack developed to date and its current 
status.  

 Multi-Screen Experience Components – describes the Multi-Screen Experience Components 
that have been developed for the Theatre at Home prototype so far, as well as additional 
components whose development is anticipated in the short term. 

 Production Tools – describes the first set of production tools developed to support the 
authoring of the Theatre at Home service prototype. 

  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 9 (of 46) 

Terminology 

The project has adopted some specific terms to describe aspects of the 2-IMMERSE platform and its 
operation. The following may be found within this document: 

 Experience – 2-IMMERSE is developing four innovative service prototypes of multi-screen 
entertainment ‘experiences’. Unlike existing services, the content layout and compositions are 
orchestrated across the available screens and an object based broadcasting approach is used for 
efficient content distribution. 

 Distributed Media Application (DMApp) – 2-IMMERSE multi-screen entertainment experiences 
are composed of many applications configured to work together to deliver the look and feel of a 
single application. 2-IMMERSE calls this collection a Distributed Media Application, or DMApp. 

 Distributed Media Application (DMApp) Component - In 2-IMMERSE, re-usable components are 
assembled within a Distributed Media Application (DMApp) to create coherent multi-screen 
experiences. 

 Context – 2-IMMERSE defines a ‘context’ as one or more connected devices collaborating 
together to present a media experience. Each context has a ‘contextID’ unique to its session. 
There can be many contexts on a single LAN (eg. a home network), but a device can only be a 
member of one context at a time. Devices belonging to the same context must be able to 
discover each other using the DIAL protocol. Devices can join or leave a context at any time. 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 10 (of 46)  © 2-IMMERSE Consortium 2018 

2 Snapshot of the platform and components 

This section provides a visual overview of selected aspects of the First Release of the 2-IMMERSE 
platform and components. It is intended to give the reader an appreciation of the scope of what has 
been achieved so far by means of diagrams and screen captures which hopefully help to place in 
context the technical detail which follows. 

2.1 Platform Architecture for the First Release 

In deliverable D2.1 we introduced a ‘layered’ approach to documenting the 2-IMMERSE architecture, 
with layers defined as follows: 

 Platform Architecture – the high-level architecture of the 2-IMMERSE platform. 

 Service Architecture – the services that comprise the platform. 

 Application Architecture – how our client applications are architected. 

 Production Architecture – how the production capabilities are architected. 

Figure 1 below shows the 2-IMMERSE Platform Architecture as implemented for the First Release. 
The grey blocks in Figure 1 show the relationships between the key architectural elements: the 
Platform Infrastructure, Platform Services, the Client Application (or DMApp), the DMApp 
Components and the Production Tools.  

 

 

 

Figure 1: 2-IMMERSE Platform Architecture for the First Release 

 

iOS/Android/Linux OS

Wallclock

Redis

Consul

MarathonWebsocket Layout

Lobby
Call

Server

Mantl
services

Backend
services

Client
services

Reverse proxy
API gateway Kong

Shared 
State

MongoDB

Logging

Kibana

Elastic 
Search

Logstash

Timeline

P
la

tf
o

rm
 S

e
rv

ic
e

s
C

lie
n

t 
A

p
p

lic
at

io
n

 (
D

M
A

p
p

)

HbbTV, Set-Top Box or 
Companion Device

P
la

tf
o

rm
 In

fr
as

tr
u

ct
u

re

Origin Server

GitLab

Traefik

CICD + 
Docker 
Repo

Video
Scrolling 

Text

Title Card

Article

Article
Controls

Image

Text Chat

Text Chat
Controls

Video 
Chat

Video Chat 
Controls

Video 
Chat View

Component 
Switcher

Web Application

Host Application

D
M

A
p

p
C

o
m

p
o

n
e

n
ts

Document 
Editors

Text Timing 
Editor

Image 
Processing 

Tools
P

ro
d

u
ct

io
n

 T
o

o
ls



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 11 (of 46) 

In deliverable D2.2, we outlined our decision to use Mantl to provide essential platform 
infrastructure to support the 2-IMMERSE platform services. The Mantl services deployed for the First 
Release (shown in dark green) are the reverse proxy Traefik, the API gateway Kong, the Elastic Stack 
for log data ingestion, indexing and analysis, service registry Consul and the container orchestration 
platform Marathon. Additional platform infrastructure (shown in blue) has been deployed alongside 
Mantl to provide private code repositories (GitLab) and Continuous Integration/Continuous 
Deployment service to automate the build and deployment of service and application code. The 
Origin Server provides crucial hosting functionality. 

The 2-IMMERSE services are divided into client-facing (shown in dark orange in Figure 1) and back-
end (shown in light orange). 

The Websocket service provides websocket communication functionality between client components 
and platform services, and encapsulates the Call Server and Lobby capabilities required to enable 
video and text chat for the Theatre at Home trial.  

The Shared State service, based on a server developed by the FP7 MediaScape project, provides 
shared storage of state information supported by a notification subscription model. It makes use of 
back-end document-oriented database service MongoDB. 

The Wallclock service provides time synchronisation capabilities for services and client nodes 
deployed within the 2-IMMERSE platform. 

The Layout service, unique to 2-IMMERSE, is responsible for managing and optimising the 
presentation of a set of DMApp Components across a set of participating devices. The Layout service 
uses back-end service Redis as a performant in-memory data structure store. It communicates with 
the Timeline back-end service, also unique to 2-IMMERSE, which is responsible for the overall 
temporal orchestration of an experience (DMApp) within a single household. 

The Logging service facilitates the transmission of log messages from Client applications to the Elastic 
Stack. 

Figure 1 also shows how the Client Application (DMApp) architecture is centred around a Web 
Application (shown in yellow) hosted on a variety of different platforms, including iOS and Android 
for companion devices and Linux/Unix for HbbTVs and TV emulators. It shows the set of DMApp 
Components (shown in light green) developed for the Theatre at Home trial, whose presentation on 
companion and TV devices is controlled by the Layout service. More information on each of the 

components shown is provided in Section 6 of this document. 

Finally, the Production Tools used to create the Theatre at Home experience are indicated 

separately. As explained later in Section 7, the tools used at this early stage in the project (shown in 
blue) were relatively simple and enabled manual creation and editing of image and text content, 
timeline and layout metadata and timing metadata for the Scrolling Script DMApp Component. 

Readers should note that the architecture and components described here represent a snapshot of 
the First Release. The 2-IMMERSE platform will evolve and improve to support subsequent trials, 
particularly with the addition of new client-facing services, DMApp Components and Production 
Tools. 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 12 (of 46)  © 2-IMMERSE Consortium 2018 

2.2 2-IMMERSE Wiki 

The 2-IMMERSE Wiki, publicly-accessible via the 2-IMMERSE website, provides an interactive 
reference for many aspects of the 2-IMMERSE Platform [1]. It includes detailed information about 2-
IMMERSE services and high-level descriptions of their APIs, as illustrated in Figure 2. This reference 
was used to create deliverable D2.2 and will be updated as the platform develops.  

 

 

 

Figure 2: Architecture and API reference on the 2-IMMERSE Wiki 

 

2.3 2-IMMERSE Code Repository (Gitlab) 

The project partners are using a set of private repositories hosted on a GitLab server by IRT to 
manage development of the platform services, client application and DMApp Components. The 
Gitlab repositories (as illustrated by the screenshot in Figure 3) contain source code, resources and 
technical documentation, including low-level descriptions of APIs and the Timeline and Layout 
documents which are used to author multi-screen experiences.  

Access to the Gitlab repositories can be made available on request.  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 13 (of 46) 

 

 
 

Figure 3: Repository list on the 2-IMMERSE Gitlab server 

 

2.4 Mantl Services 

Figure 4 shows the homepage of the Mantl web interface, which provides access to Mantl services 
which form the foundation of the 2-IMMERSE platform, including Marathon, Consul, Traefik, 
Elasticsearch and Kibana. 

 

 

Figure 4: Mantl dashboard 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 14 (of 46)  © 2-IMMERSE Consortium 2018 

Figure 5 shows the web interface for Marathon, which provides an overview of all micro-services 
running on the platform. 

 

 

Figure 5: Marathon web interface showing status of micro-services 

 

2.5 Backend Services 

Figure 6 shows the web interface for the Kibana service, which provides near real-time access to 
combined log data from all clients and services which comprise the 2-IMMERSE platform.  

 

 

Figure 6: Kibana web interface showing how logs are displayed and searched 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 15 (of 46) 

2.6 Timeline and Layout Documents 

As explained above, new document formats have been designed to enable timeline and layout 
specifications to be authored for a multi-screen experience. Figures 7 and 8 below show incomplete 
extracts from the Timeline and Layout Documents created for the Theatre at Home trial.  

The Timeline Document format is inspired by the W3C SMIL specification, extended with attributes 
specific to 2-IMMERSE requirements. 

The Layout Document is written in JSON and specifies layout constraints for each DMApp Component 
within a DMApp. 

 

 

 

 

Figure 7: Extract from a Timeline Document 

 

 
  



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 16 (of 46)  © 2-IMMERSE Consortium 2018 

 

 

Figure 8: Extract from a Layout Document 
  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 17 (of 46) 

Figure 9 shows how a Layout document authored for the Layout Service can be visualised during 
testing and debugging. The boxes show how DMApp Components have been allocated to layout 
regions. 

 

 

Figure 9: Example output from Layout Renderer tool 

 

2.7 TV and Companion Client applications for Theatre at Home trial 

 

 

Figure 10: Example of TV Emulator display from the Theatre at Home DMApp 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 18 (of 46)  © 2-IMMERSE Consortium 2018 

Figure 10 shows a screenshot of the TV Emulator client display while running the Theatre at Home 
DMApp. The figure shows the layout of DMApp Components during playback of the as-live video 
from the theatre. Beneath the Video component, the Scrolling Text component highlights the script 
line which is currently being spoken. To the right hand side, the Text Chat component displays the 
text chat shared between the households who are watching the play together.  

 

 

Figure 11: Example of Companion device display from the Theatre at Home DMApp 

 

Figure 11 shows a screenshot of the Companion client display while running the Theatre at Home 
DMApp. The figure shows the layout of DMApp Components while households are waiting for the 
play to start. In the top left, the Video component presents a short interview video introducing the 
play. Beneath it, the Video Chat Control component enables users to mute their microphone or 
change the audio volume during video chat, which is displayed on main TV screen. To the right, the 
Article component displays supplementary information about the play, which can be scrolled using 
the arrow buttons of Article Control component beneath. On the far right, the Text Chat component 
is accompanied by the Text Chat Control component which allows messages to be entered and 
shared. At the bottom of the screen, the chevron allows the Component Switcher component to be 
shown and hidden as required. The Component Switcher allows additional content to be selected in 
Video, Article and Image Components, some of which are shown on the TV display as well.  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 19 (of 46) 

3 Platform Infrastructure 

This section of the deliverable describes the infrastructure deployed to support the 2-IMMERSE 
service platform. The core Mantl platform was outlined and described in D2.1 and D2.2, so here we 
summarise the platform as we have deployed it, together with additional service and components 
that we have adopted. 

3.1 Mantl 

As noted in D2.2, Mantl [2] is a modern platform for rapidly deploying globally distributed services, 
typically as containers. It provides an integrated set of industry-standard open-source components. It 
is cloud infrastructure provider agnostic, and can be deployed on Amazon Web Service (AWS), 
Google Compute Engine (GCE), Microsoft Azure, OpenStack, Vagrant, Bare Metal etc.  

Mantl is licensed by Cisco under the Apache Version 2 License. 

3.1.1 Marathon / Mesos / Docker container platform 

Containers provide a lightweight and secure mechanism for distributing and running applications and 
services, and are commonly used for micro-service deployment. Marathon [3] is a widely-used 
container orchestration platform for Apache Mesos [4], which is a cluster manager providing data 
centre resource management to distributed applications and frameworks. Both Marathon and Mesos 
are an integral part of the Mantl platform. Mantl uses Docker [5] as the Mesos container run-time 
engine. 

3.1.2 Traefik – reverse proxy / load balancer 

Traefik [6] is an HTTP reverse proxy and load balancer that is part of the Mantl platform, exposing 
containerised services onto well-known service end-point URLs. 

3.1.3 Kong – API Gateway 

We are planning to use Kong [7] as an API gateway for the service platform, which will facilitate 
identity management between multiple contexts joining a shared experience. At the time of writing 
this has not been implemented and so will be documented further in the next release. 

3.2 Origin Server 

We have deployed a basic origin-server which we are using to host client applications, DMApp 
Components and their assets, timeline and layout documents, and media. 

We have devised a basic asset structure for organizing these assets on the origin server. 

3.3 CI/CD and Docker Repository 

Within the environment which we are using to host the Mantl cluster we have also deployed a virtual 
machine to host a CI/CD (Continuous Integration/Continuous Development) server (running Jenkins 
[8]), and a Docker registry. 

We are currently using the CI/CD server to deploy services to Mantl. There is potential to use it as a 
build server for client applications in future. 

http://jenkins-ci.org/)


 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 20 (of 46)  © 2-IMMERSE Consortium 2018 

3.3.1 Service Deployment Workflow 

The typical workflow for deploying a service is as follows: 

Develop service:  

 Create a Docker file 

 Create a JSON service template for Marathon deployment 

 Push to source code repository on IRT GitLab 

Run a Jenkins Job that will: 

 Pull the project source code from IRT GitLab 

 Build the Docker image and push to the Docker registry 

 Run any automated build tests 

 Deploy the Container using the Marathon REST API using the previously defined JSON service 
template 

Currently Jenkins jobs are manually invoked by developers, but they could be triggered automatically 
by commits to the IRT GitLab repository in future. 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 21 (of 46) 

4 Platform Services 

This section of the deliverable describes the core platform services developed and deployed to date, 
and their current status. 

4.1 Timeline 

The Timeline Service is responsible for the overall temporal orchestration of the experience (DMApp) 
within a single household. The core design which we described in D2.2 has been implemented in this 
software release, with a number of changes in various areas. 

The REST API has been updated to cater for a varying number of companion devices: any media item 
that is to be run on a companion device can have zero, one or many instances active at any time. 
Whilst the Layout Service is responsible for actually starting and stopping these instances as 
companion devices become available or go offline, the Timeline Service has to be aware of this to 
ensure seamless temporal orchestration. A second change from the initial design is that the 
‘dmappcStatus’ call has been modified so that clients can inform the Timeline Service about the 
expected end time of media items (such as pre-recorded video or audio) before the media has 
actually run to completion. This allows the Timeline Service a “limited clairvoyance”, which enables it 
to schedule future media changes early, leading to a more seamless user experience. 

The Timeline Document format (an example of which was shown in Section 2) has been updated to 
support functionality required by the Theatre at Home trial, including providing relevant attributes 
for the various DMApp Component types which are used.   

4.2 Layout 

The Layout Service is responsible for managing and optimising the presentation of a set of DMApp 
Components across a set of participating devices. It is implemented as a node.js application that 
builds on a set of widely used npm packages. 

In deliverable D2.2 we presented a v1 REST API (defined in RAML), and the format of the Layout 
Requirements Document was being developed. At that time we had simple node.js app using Osprey 
[9] to provide a stub implementation of the API, and were starting to build out the implementation 
behind the API. 

Since that time, the Layout Service has developed as follows: 

 Specification and implementation of the layout requirements JSON document format (an 
example of which was shown in Section 2) 

 Specification and implementation of the websocket push message format, integrating with 
the websocket service 

 Specification and implementation of a v2 API 

o Transaction API (a batch API for component state changes to avoid multiple spurious 
layout passes) 

o Override of layout priorities 

o Dynamic and template layout models 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 22 (of 46)  © 2-IMMERSE Consortium 2018 

 Integration with Redis [10], used as a performant in-memory data structure store as a 
backend to allow us to scale up service instances in future. 

We have just completed specification of a v3 API. This includes a number of features required for the 
UX that has been defined for the Theatre at Home Service Prototype, including: 

 Logical Regions (Extend the current 'physical' device model (i.e. a rectangle with dimensions 
as reported in device caps), to support multiple 'logical' regions that can be flexibly 
composed by the client. 

 Support for layout co-ords returned by service as percentages rather than pixels 

 Preferred Size as a constraint (in addition to minimum size), that can be over-ridden by 
clients 

 Overlays (allowing a component to define logical regions to enable other components to be 
laid out as an overlay) 

 Destroy Transaction 

We are also reviewing at the current component lifecycle model to handle multiple instances of 
components, and component migration cleanly. 

4.3 Websocket 

The basic Websocket Service API has been implemented as defined in D2.2 with a few modifications. 

The Lobby and Call Services were integrated into the Websocket Service implementation, since some 
of the required functionality is already provided by the Websocket Service. 

The Websocket Service is implemented as a node.js application that builds on a set of widely used 
npm packages, notably socket.io. 

4.3.1 Lobby 

4.3.1.1 Lobby API Changes since D2.2 

The Call Service proposed in D2.2 was based on peer-server – a WebRTC signalling service that 
accompanies the open source peer.js client library. Unfortunately, development and support of 
peer.js has effectively ceased and a more streamlined open source alternative called Simple-Peer 
[11] has been adopted instead. 

A Simple-Peer compatible call server does not need to be aware of the WebRTC signalling protocol 
unlike the peer-server/peer.js implementation referenced in D2.2. Only a 2-way channel of 
communication between remote peers is needed that permits the exchange of arbitrary payloads. 
This has simplified the 2-IMMERSE Call service implementation to the extent that we decided to roll 
it into the Lobby service implementation as a single message send/recv endpoint with payloads 
determined entirely by the WebRTC clients.  

4.3.1.2 Lobby/Call Service Implementation 

Clients connect to the Lobby service via a socket.io namespace and lobbies are implemented as 
socket.io rooms. This has simplified the Lobby service considerably whilst facilitating horizontal 
scalability. See notes on Lobby/Call service scalability. 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 23 (of 46) 

The existing 2-IMMERSE Websocket Service is already implemented using socket.io so it made sense 
to implement the Lobby service as a plugin for this service to keep the number of websocket-like 
connections between the 2-IMMERSE service architecture and its clients to a minimum. 

Lobby clients can connect to the socket.io ‘/lobby’ namespace using the standard socket.io.client 
library and they will automatically benefit from websocket and long-polling support in addition to 
automatic reconnection. For convenience, we have implemented a small client library that provides 
high-level event notifications and lobby/call operations. 

4.3.1.3 Scalability 

The Lobby service implementation is socket-io adapter-safe; meaning that it only utilizes methods 
that are delegated to socket.io’s adapter layer and it only uses socket.io’s asynchronous interface. 
This is necessary because some adapter implementations are asynchronous such as the 
socket.io.redis adapter [12]. This adapter in particular will allow the Lobby/Call service to scale 
horizontally based on load and/or number of client connections.  

The Lobby service is also stateless which ensures the number of server instances can be scaled up or 
down robustly and permits the Lobby service to support a large number of concurrent lobbies and 
connections. As a result, lobbies are stateless entities that are distributed over a number of server 
instances. 

The current implementation provides distinct lobbies for text-chat and video-chat and helps to 
establish WebRTC peer connections between lobby members. 

4.3.1.4 Lobby Identifiers 

Lobby identifiers are now an integral part of the on-boarding flow for 2-IMMERSE experiences and 
are derived from the inter-context sync identifiers used to group households together into a shared, 
synchronized experience. 

4.3.1.5 Near-term changes 

In the near-term, clients of the Lobby/Call service will need to specify a valid session token in order 
to instigate peer-to-peer calls and join lobbies. This will occur after the identity management aspects 
of the 2-IMMERSE service architecture have been configured. It will be possible for the Lobby service 
to exchange the user’s session token for user credentials, such as a person’s display name. User 
identity is essential for functionality related to user profiles, analytics, security, personal devices and 
social features. Currently, all callers and lobby members are anonymous, which is just sufficient for 
the first trial.  

A longer-term task (required for the larger trials) involves replacing the default in-memory socket.io 
adapter with socket.io.redis to provide a scalable back-end implementation. 

The Websocket/Lobby service and the shared-state service use socket.io independently, resulting in 
some duplication within the architecture. We are aiming to reduce this down to a single socket.io 
connection per client that goes via the Websocket-service. This will simplify maintenance and make it 
easier to reason about whether a client is on-line or off-line by avoiding ‘partially’ on-line states. The 
Websocket service is scalable and extends the reach of the Redis micro service event bus (proposed 
for inter-service communication) out to client devices via socket.io. The shared-state service will 
benefit from this scalable client-server communication and presence determination if it implements 
its communication layer using the Websocket service. The shared-state service may ultimately 
become a Websocket-service plugin too that uses Redis for persistent state storage. 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 24 (of 46)  © 2-IMMERSE Consortium 2018 

4.4 Shared State 

In the original system architecture described in D2.1, we had anticipated the need for DMApp 
Component state to be migrated as the components themselves are migrated between client 
devices, and had made provision for this in the original Layout Service API. 

As the client application and component architecture has evolved, the requirements for inter-
component communications and distributed functionality have become clearer. Although we have 
both the websocket service and the HbbTV app-to-app server websocket mechanisms available for 
inter-component communication, different patterns require different approaches (one-to-one RPC-
like, one-to-many, many-many pub-sub etc.). 

As we reviewed work done in previous projects, we thought that the shared-state server developed 
in the FP7 MediaScape project [13] would likely meet our requirements for a simple shared state 
model where clients have a simple notification subscription model, managed through a client API. 

On this basis we have deployed the MediaScape shared state service [14] within our platform. This 
was relatively straightforward, requiring Dockerisation of the node.js based server itself, and the 
MongoDB backend it uses. We have deployed MongoDB into Mantl using a Docker image publicly 
available on DockerHub. 

4.5 Logging and Monitoring 

In D2.2 we explained how internal platform logging would be provided by the Elastic Stack [15] 
instance provided within the Mantl platform.  

The three components which comprise the Elastic Stack – Logstash, Elasticsearch and Kibana – all run 
within separate containers within the Mantl platform, as do each all of the 2-IMMERSE platform 
services. Docker is configured with a logging driver whose job it is to collect logs from containers and 
send them to an appropriate target. Within Mantl, this logging driver automatically takes all output 
sent to stdout and stderr by the 2-IMMERSE platform services and directs it to the Logstash syslog 
input plugin.  

Although this makes it unnecessary for 2-IMMERSE services to use the syslog protocol themselves, it 
has been important for us to define a flexible logging format which specifies data fields which can be 
automatically extracted by the Logstash pipeline and indexed within Elasticsearch. The following is an 
example log message, with data field prefixes shown in bold: 

2-IMMERSE contextID:78ff9e20-9488-11e6-be3b-53bd9dd1ff12 dmappID:799a7e90-9488-11e6-be3b-
53bd9dd1ff12 deviceID:799a7e90-9488-11e6-be3b-53bd9dd1ff12 logmessage:'dmappID and deviceID are the 
same. This cannot be right!' source:LayoutService sourcetime:2016-10-19T12:01:45.000Z 

The complete range of fields extracted by Logstash at the time of writing is as follows: 

 contextID, deviceID, dmappID and dmappcID: Identifiers for the current context, device, 
DMApp and DMApp Component respectively. 

 api: Denotes a REST API call, from which contextID, deviceID, dmappID and dmappcID can 
also optionally be extracted. 

 logmessage: A descriptive message 

 body: The body of a REST API call 

 xpath: The specification of a location in a Timeline document, using the XPath format 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 25 (of 46) 

 source: The service or application creating the message 

 subsource: A specific module within the service or application  

 level: The relative importance of the message (ie. the log level) 

 sourcetime: The timecode (local to the source) at which the message was created 

 

The Client Application and its associated DMApp Components cannot send log messages to the 
Docker logging driver in the same way. Logging from these external sources is achieved by posting a 
JSON structure to a dedicated Logging Service which runs within Docker. The Logging Service 
reformats received JSON structures into the message format shown above and sends them to stdout, 
from where they are passed to Logstash in the same way as for other services. The Logging Service 
can receive a single log message at a time or an array of messages packaged within a single JSON 
structure.  

Once log messages have been processed by the Logstash pipeline and indexed by Elasticsearch, they 
can be viewed and analysed within the Kibana web application. Kibana has been configured with a 
range of pre-defined searches which enable 2-IMMERSE platform logs to be filtered and presented in 
a meaningful way – for example using the ‘sourcetime’ field to ensure the correct sequencing of logs 
between multiple services. In addition, the debugging component which is integral to the Client 
Application automatically constructs a hyperlink to a Kibana search based on the context in which the 
DMApp is running. 

Kibana also provides the ability to create dashboards which present multiple visualisations to 
summarise data collected during a particular time interval. An interactive ‘2-IMMERSE Sanity Check 
Dashboard’ shows key data which supports debugging activities, for example allowing developers to 
identify which  Components were active within a particular context, and which of these reported 
errors.  

In addition, 2-IMMERSE plans to make use of Google Analytics as a complementary solution for 
logging of user interactions with DMApp Components. Google Analytics is much better suited to 
recording fine-grain interaction events which are linked to specific research questions to be 
addressed by each of the project’s trials. At the time of writing, Google Analytics event tracking had 
not yet been incorporated within the DMApp Components, but is expected to be completed in time 
to capture data from Theatre at Home triallists.  

4.6 WallClock Service 

The WallClock service provides time synchronisation capabilities for services and client nodes 
deployed within the 2-IMMERSE infrastructure. The notion of a common synchronized WallClock to 
facilitate the distributed synchronisation of media playback, was described in deliverable D2.2. Each 
terminal presenting or directing the presentation of media need to have a common notion of time – 
this is achieved by the maintenance of a local Wall Clock that is synchronised to a master WallClock. 

4.6.1 WallClock sync protocol 

The time synchronisation protocol implemented by the WallClock service is an adaptation of the 
DVB-CSS’s WallClock synchronisation protocol (CSS-WC) to fit wider internet deployments. It 
provides a choice of transports (UDP, WebSockets) and message serialisation capabilities (binary 
message format, JSON format) to suit the context. For example, UDP and binary message formats are 
used in scenarios where inter-device synchronisation is needed. The WebSockets transport and JSON 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 26 (of 46)  © 2-IMMERSE Consortium 2018 

message formats are more suited to distributed synchronisation scenarios that require interactions 
across network boundaries. 

The protocol is intended to be a request-response protocol that functions identically to that defined 
in clause 8 of the DVB CSS specification as the "Wall Clock protocol". As a quick reminder: the 
protocol is a request-response exchange that is initiated by the party wishing to sync its clock (client) 
to the other party (server). 

 

When a node issues a WallClock protocol request or response, it needs to specify the type of the 
protocol message (in the “type’ message field) as per the following values: 

 

Value Meaning 

0 Request 

1 Response with no 
follow-up planned 

2 Response with follow-
up planned 

3 Follow-up 

 

The messages can then be serialized to binary or JSON format. The binary format for a WallClock 
protocol message is identical to the DVB CSS format.  

With regards to the JSON serialization format, the protocol message carries the same fields as the 
DVB CSS wall clock protocol, however instead of encoding them in a binary structure, they are 
instead carried in a JSON object. The properties of the object are as follows: 

Example: (with explanatory comments that must be removed for it to be valid JSON) 

 

{ 

    "v":    0,              /* version = 0 */ 

    "t":    2,              /* type = response with follow-up planned */ 

    "p":    0.0001,         /* server clock has 0.1 millisecond precision */ 

    "mfe":  50,             /* server clock max freq error = 50 ppm */ 

    "otvs": 19346582,       /* client request sent at 19346582.9826511 seconds */ 

    "otvn": 982651100,       

    "rt":   29784724.1927,  /* server received request at 29784724.1927 seconds */ 

    "tt":   29784724.1938   /* server sent response at 29784724.1938 seconds */ 

} 

 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 27 (of 46) 

4.6.2 Additonal Libraries and Deployment 

The WallClock Service was implemented using node.js and the source code is available on the 2-
IMMERSE GitLab [16]. The common functionality to all synchronisation protocols such as message 
serialisers, message handler registration was extracted into a separate JS library, called sync-
protocols [17]. 

To enable developers to manipulate WallClock time and media timelines, a JS library (dvbcss-clocks) 
was developed and released [18]. This library is used by the Timeline Service and Client API to create 
clock objects for representing WallClock time and timelines. 

The WallClock Service is deployed on the Mantl platform and exports the following endpoints: 

 WebSockets: ws://wallclock-service.2immerse.advdev.tv:80 

 UDP: wallclock-service.2immerse.advdev.tv:6677 

The synchronisation accuracy achieved via the WallClock service algorithm is approximately  9ms. 
This lies within the range of typical video-frame durations (e.g. a 50 fps video) to achieve frame-
accurate or near-frame-accurate synchronisation. 

 

4.7 Inter-Home Sync 

The provision of a solution to achieve inter-home media synchronisation was simplified for the initial 
service prototype. The reasons for this were two-fold: 

 Frame-accurate synchronisation is not mandatory for inter-home experiences – When users are 
part of an experience spanning across homes and communicating via voice or video conference, 
the perception of asynchrony becomes looser. Stricter synchronisation accuracy is, for instance, 
required if the experience spans only one room. 

 Cloud-based synchronisation solution required the proposal of a new algorithm - the DVB-CSS 
media sync model relies on assumptions related to the local network context that do not lend 
well to a more distributed environment. It assumes the WallClock of local synchronisation slaves 
locked onto the WallClock of the master device via a UDP-based sync protocol. Also, the 
provision for slave media-sync functionality on HbbTV enabled devices is non-mandatory. This 
means that there is no guarantee that a DVB-CSS based cloud-sync solution would be compatible 
with future TVs. Hence, a decision was made to 

o push the cloud-sync client functionality on the TV to its application environment  

o free the cloud-sync service from the constraints of the DVB-CSS media sync solution by 
adopting a new sync algorithm that is closely inspired from DVB-CSS but works in more 
distributed manner. 

Due to the looser sync accuracy requirement for inter-home sync and the longer-term nature of the 
cloud-sync development work, a simplified synchronisation solution for the ‘Theatre at Home’ service 
prototype was proposed. The longer-term cloud-sync solution (the Timeline Synchronisation Service 
described in D2.2) is currently under development and a first prototype is planned for release during 
the first quarter of 2017. 

The simplified solution is based on using the WallClock service and the Shared-State Service to 
enable the synchronised start of the DMApp. Its operation is outlined in the following sub-sections.  



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 28 (of 46)  © 2-IMMERSE Consortium 2018 

4.7.1 Anchoring the DMApp Timeline  

When a DMApp starts as a result of a DMApp component kicking off the experience at one of the 
client devices (e.g. the TV starts to play a video), the Timeline Service is made aware of the exact 
WallClock time when the first DMApp component started via a CLOCK_CHANGED event. This allows 
the Timeline Service to anchor the timeline for the current DMApp (experience) to a point in 
WallClock time: this is the time at which the DMApp timeline starts. After having received this time 
value, the Timeline Service instance responsible for the current DMApp can now schedule the 
loading/unloading of DMApp components as per the DMApp timeline description. Because of the 

shared WallClock time (accurate to approximately 9ms), the various clients can now be instructed 
to start playing their DMApp components (scheduled to start at the same time in the experience). 

 

4.7.2 Sharing Playback Timing Data via Shared-State Object 

Whilst this timeline anchoring approach is sufficient to ensure the synchronised start of DMApp 
components, synchronising the playback of continuous media on various devices requires the 
exchange of additional timing information about media playback. This is because there are additional 
delays incurred at the client node when loading and playing a video stream such as fetching, 
buffering and decoding times. The start time of a DMApp video player component may not denote 
the actual time its video started playing. 

To synchronise the playback of continuous media across different homes (context), the Shared-State 
service is used to share media playback progress timing information from one context (the master) to 
another (the slave context). This timing information is in the form of a tuple (called the WallClock 
tuple) and contains the following data: 

1. sessionId – the cross-context session for the current DMApp instance 

2. contextId – the tuple originator’s context identifier 

3. DMAppComponentId – the identity of the DMApp component (optional) 

4. wallclockTime – wallclock time when media progress was read 

5. mediaTime – time on media timeline 

6. playbackStatus: paused or play 

The WallClock tuple is a per-session object created at the Shared State service and it is initialised by 
the first home joining the session. Each session is identified by a sessionId. This identifier is 
predetermined for each client as a result of the client joining a particular lobby (via the Lobby 
Service). Joining the session is achieved by writing to that object (in an atomic way) – e.g, adding 
contextId. This is done by the device that creates the context / loads DMApp in the first home.  

Subsequent homes joining the session via the Lobby Service will receive a shared copy of the 
WallClock tuple via the Shared State service. This WallClock tuple object is unique for that session. 
Each device in the homes can then retrieve the WallClock tuple and use the {wallclockTime, 
mediaTime} pair of timestamps to synchronise their DMApp component(s). 

 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 29 (of 46) 

4.7.3 Achieving Inter-Home Sync 

The {wallclockTime, mediaTime} timing pair specifies a relationship between the common WallClock 
timeline and the master media timeline (the main video’s timeline). For the Theatre-at-Home 
prototype, the main video in the subsequent homes need to be synchronised to the main video 
playing in the first home joining the session. The mediaTime timestamps coming from the first home 
can therefore be directly used as timing information to drive the playback of the same video in the 
other homes. 

Based on elapsed WallClock time, the expected media time corresponding to the current position on 
the WallClock timeline can be then calculated. 

The dvbcss-clocks library provides a CorrelatedClock object to represent the relationship between 
two timelines (the {wallclockTime, mediaTime} timing pair is called a correlation). At home receving 
the WallClock tuple object, the client device playing the main video instantiates a CorrelatedClock 
object to represent the master DMApp component’s playback timing information and uses this clock 
object to drive the playback of its own video component. 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 30 (of 46)  © 2-IMMERSE Consortium 2018 

5 Client Application 

This section of the deliverable describes the client application stack developed to date and its current 
status.  

5.1 Overview 

The definition of a DMApp has changed as the Theatre At Home trial implementation has evolved. 
Conceptually, a DMApp is still a single application which is distributed across multiple devices, but we 
now have a better understanding of what is reusable from episode to episode, genre to genre and 
how productions teams will author and deliver experiences. 

Authoring a DMApp for a franchise involves the commissioning and development of: 

1. A set of DMApp Components that can be reused by each scheduled episode 

2. Custom layouts, glue code, styling and brand assets 

3. Supplementary content 

4. A reusable programme template describing the overall format of each episode 

These ingredients constitute a DMApp, reused from one episode to the next. For example, each 
MotoGP race/episode needs a unique timeline instance document referencing object-based media 
for that particular race. For live races, there wouldn’t be a pre-existing timeline document; but one 
might be recorded as the live production unfolds. 

The key distinction is that the timeline document is not part of the DMApp – it is a media feed that 
the DMApp consumes, like a piece of video. 

In order to clarify the definition of a DMApp further, it is useful to highlight the constituent parts 
from which an experience is constructed. The following table describes how these parts form the 
application stack which runs on the client device. In order to facilitate the re-use of key functionality 
which is common to all experiences, four different applications are provided, two of which are Single 
Page Web Applications (SPA).  

The Cordova wrapper technology [19] has been used as the basis of the client application on 
companion devices. Further information is provided in Section 5.5. 
  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 31 (of 46) 

 

 Constituent part Content Hosting 

7 Timeline events Timeline document or live-broadcast 
events 

CDN, streamed or 
broadcast 

6 DMApp Components Article, scroll-text, video-chat etc. CDN 

5 DMApp SPA 
 

Genre- or programme- specific 
application comprised of style 
sheet/theme, images, supplementary 
content, responsive layout, glue-code 
and a Layout Requirements document. 

CDN 

4 Onboarding SPA 
Launches the DMApp SPA 
and implements features 
common to all DMApps 

Genre- or programme- independent 
application that includes sign-in/up, 
EPG, discover/join/create contexts, 
accept/send invites, box office, 
broadcaster-specific styling and layout 
(e.g. BT, BBC, Sky etc.). 

CDN 

3 Bootstrapping Application 
Launches the Onboarding 
SPA. 

A simple web page embedded into the 
native Cordova application, used to 
redirect the browser to the CDN-hosted 
Onboarding SPA. 

Embedded in 
Cordova app. 

2 Common support libraries 
and resources 

e.g. client-api CDN 

1 TV Emulator or Cordova 
Application  
The DMApp Operating 
System. Contains the 
bootstrapping application. 

DVB CSS, DIAL, Cordova extensions. App store 

 

5.2 Application Logic 

Non-distributed web applications use a combination of JavaScript variables and events to implement 
client-side business logic. A typical example might be programming what happens when a user 
presses a button or the browser receives an XHR response. 

In a distributed web application, changes to variables must be propagated between different 
browsers and events need to be system-wide. There are a great many frameworks that address these 
requirements, providing a home for the much-needed application ‘glue-code’. As explained in 
Section 4.4, 2-IMMERSE has chosen to adopt the MediaScape Shared State framework for this 
purpose. This section details how we are using it. 

The Shared State service has been used to provide application developers with a multi-device data-
binding scheme. This delivers a more declarative style of programming and has reduced the amount 
of bespoke application logic required. This scheme has insulated the DMApp Components from 
specifics of the shared-state service by providing a more abstract programming interface.  



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 32 (of 46)  © 2-IMMERSE Consortium 2018 

5.2.1 Scopes 

State is logically divided into a number of different ‘scopes’. A unique scope name (resembling a file 
path) identifies each scope. Data can be shared between one or more components using a pre-
agreed scope name, specified in the timeline document. This allows various groups of components to 
communicate state between one another. 

5.2.2 Session Scopes 

A session describes a group of layout contexts taking part in a shared, synchronized multiscreen 
experience.  This is typically used for experiences that are synchronized between two or more 
homes. The session scope contains URLs for timeline and layout documents together with a wall 
clock tuple for synchronisation purposes. The session scope may also contain one or more lobbyIds 
and a list of layoutContextIds.  

The scope name is a pre-determined identifier allocated during the on-boarding process, or hard-
coded for trial purposes. The first layoutContext to join the session will initialise the shared state. 

5.2.3 Global Scopes 

A DMApp can store application data in the global scope allowing it to be shared by any number of 
different DMApp Components. A simple example might be a state governing the audio volume of the 
application. The shared state service maintains the authoritative volume level, which other DMApp 
Components read and write. Servers are a more reliable source of authority than client devices. 

A single global scope is created per layoutContextId. Any DMApp Component can add, remove or 
change global state and these changes are automatically propagated to all subscribers. The name of 
the global scope is synthesized from the layoutContextId. 

5.2.4 Group Scopes 

A group scope provides a way for several related components to communicate with each other. A 
DMApp Component such as a control panel might mirror a subset of its attributes to a group scope. 
Another DMApp Component may then listen to changes to the values in this group scope. This 
provides some of the much-needed application ‘glue-code’ that would otherwise be implemented 
using a combination of JavaScript variables and event handlers in a non-distributed app. 

Group scopes enable data-binding functionality to be constructed, permitting a more declarative 
style of programming. 

For example, a control panel component could mirror attribute values such as paused, muted and 
volume to a group state. Then an HTML video element could listen to these value changes by 
subscribing to the group scope and adjust its volume accordingly. 

The name of a group scope is synthesized from the layoutContextId and an arbitrary identifier string 
used to make the group unique. This is referred to as the ‘groupStateId’. 

5.2.5 User Scopes 

The Shared State Service also has pre-defined scopes for storing user preferences on a per-DMApp or 
DMApp independent basis. 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 33 (of 46) 

5.2.6 Keys, Values and State Mirroring 

A scope stores a list of (key, value) pairs defined by the application and its components. Values can 
be any JSON value, but it is recommended that values are kept simple and atomic updates are 
performed using the client’s transactional API. 

For convenience, we have created an UpgradeCustomElement() function for mirroring the attributes 
of a custom HTML element to the shared state service. This functionality makes it possible to hook 
up DMApp control surface components to DMApp view components located on other devices. 

The code deals with incoming parameter changes from the timeline service, which it sets as HTML 
attributes on the upgraded custom element. Changes to these attributes are detected using a DOM 
mutation observer and then automatically propagated to the shared-state service.  Similarly, the 
code listens to changes in the shared state and updates the HTML attributes. The mutation observer 
is cleaned up when the DMApp Component is destroyed. 

The timeline author must define a parameter called ‘groupStateId’ that tells the components which 
group scope to share. This parameter can be omitted, in which case no state is uploaded to the 
shared-state service. The value of groupStateId is used to build a unique name for the scope into 
which the state is stored. 

The groupStateId attribute is also attached to the HTML custom element as an attribute and can be 
changed at any time by the application or the timeline to bind a DMApp control surface to a different 
DMApp view component. 

5.2.7 Data Bindings 

The HTML attribute mirroring implementation also provides a mechanism for defining mappings 
between component attribute names and state data using evaluated expressions. 

5.3 DMApp Component Interface 

DMApp Components are a way to encapsulate functionality and user interface elements in discrete 
entities which are individually specified and controllable by the Layout Service. 

A DMApp Component is a JavaScript object which as a minimum meets a defined and documented 
JavaScript interface. This interface does not require the use of any specific library or style to create a 
DMApp Component, but is instead designed to ensure flexibility of implementation, and support 
simple conversion or wrapping of existing 3rd party functionality into DMApp Components. 

WebComponents is a web standard for encapsulating HTML and the associated CSS style and 
JavaScript logic into a single HTML tag. This can then be easily used without the internal 
implementation of the component, and the host page which uses it, needing to be aware of each 
other or unduly interfering with each other. WebComponents are used as the basis for all of the 
existing DMApp Components implemented so far. 

The client-api framework includes a default implementation of all the required parts of the interface, 
such that DMApp Component authors only need to implement the parts which are relevant for their 
components, while still permitting overriding the default behaviour where necessary. 

The DMApp Component interface includes control of the component’s life-cycle, visibility, position, 
and related functionality, and provides utility interfaces for handling of clocks and time-based cueing, 
component parameters, shared state, and access to the owning client-api instance for non-
component-specific functionality. 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 34 (of 46)  © 2-IMMERSE Consortium 2018 

5.4 Styling 

5.4.1 Requirements 

We have identified the following styling requirements: 

 Consistent visual appearance and behaviour of widgets across a DMApp’s entire set of 
DMApp Components. 

 Ability to re-skin DMApp Components based on the DMApp that instantiates them. 

 Rapidly create and apply new themes/skins. 

 Prevent certain DMApp Components from being re-skinned (e.g. in order to preserve brand 
guidelines) 

5.4.2 Modular Style Sheets 

The lazy-loading of DMApp Components introduces challenges for handling style efficiently 
(minimally). For example it’s preferable to break monolithic style sheets down into individual 
fragments that DMApp Components load on demand, letting the browser de-duplicate rules.  

The problem with a modular approach is that there is a greater chance of an inconsistent look and 
feel across the application, especially if some components have been imported from different 
authors. A component could for example define CSS rules that interfere with styling across the 
application. This may also lead to inconsistent styling on difference devices in the multiscreen 
experience.   

5.4.3 CSS Vocabulary 

What's needed is an agreed styling convention that the individual components follow; one that 
allows the appearance of every component to be overridden from a single location. Frameworks such 
as Bootstrap achieve this by defining a vocabulary of CSS class names that describe appearance and 
behaviour of web pages. 

Bootstrap is a very well respected library of UI elements providing a set of re-skinnable widgets and 
was a pragmatic choice for the Theatre At Home trial. Note that the 2-IMMERSE platform doesn't tie 
us to using Bootstrap, we are just adopting its vocabulary of CSS class names to facilitate global re-
skinning. Bootstrap does however provide styles and behaviours that we may use to implement 
responsive layouts. 

We have elected not to use the shadow DOM due to its immaturity and the added complexity this 
introduces. Instead, the parent DMApp loads a global CSS theme and the styling rules are 
automatically applied to child DMApp Components - assuming they have adopted the same CSS class 
names. 

5.4.4 Component-scoped CSS Rules 

In special cases where we don't want the global theme to affect a DMApp Component's appearance, 
the component can be styled separately - avoiding Bootstrap’s class names. Alternatively, the 
component can override global CSS rules with local rules of higher specificity. Indeed a strategy we 
have adopted is to create a CSS namespace for each custom element that wraps component-specific 
style rules, preventing them from being overridden by global changes.  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 35 (of 46) 

5.4.5 Theme Roller 

Using a global style sheet in conjunction with per-component styles based around a well-defined CSS 
vocabulary has enabled us to use a Bootstrap theme roller to generate and apply a genre-specific 
theme for the Royal Shakespeare Company. 

5.5 HbbTV Emulator and Adapters 

The 2-IMMERSE architecture includes support for the protocols defined in HbbTV 2.0 for device 
discovery in the home network, called DIAL, and media synchronisation that is based on the DVB CSS 
specification. 

As fully-implemented HbbTV 2.0 devices are not yet available and it can’t be guaranteed that they 
will be for any of the trials, 2-IMMERSE decided to develop its own TV Emulator device which is 
based on the essential protocols from the HbbTV and DVB specifications. This also has the advantage 
that 2-IMMERSE is not constrained by the minimum requirements of HbbTV, e.g. support for more 
than one video decoder on a single device. In addition, 2-IMMERSE aims to demonstrate the 2-
IMMERSE platform working with the first HbbTV 2.0 device prototypes provided by major TV 
manufacturers. 

5.5.1 HbbTV TV Emulator 

Being unable to use HbbTV devices off the shelf made it necessary to have implementations of both 
ends of the HbbTV protocols – i.e. for TV and companion. Fortunately, there are libraries available as 
open source at GitHub.  

Fraunhofer FOKUS has created libraries for all the discovery and launch features of HbbTV as well as 
for the app to app communication feature.1 For the Theatre at Home trial, 2-IMMERSE makes use of 
DIAL for the discovery of the TV Emulator, and the app to app communication feature to enable a 
companion to join the context of an DMApp instance running on the TV. 

For DVB-CSS the BBC published libraries also on Github.2 These are included in the DVB-CSS 
implementation used in the Theatre at Home trial on the device acting as the master. 

Both libraries provide so-called Polyfills, that are used if the underlying browser environment does 
not support an API natively. On the application side this means that the same API exists as if it would 
run on an HbbTV 2.0 device. 

5.5.2 HbbTV Adapters 

In principle, the actual operating system of a 2-IMMERSE client device does not matter as most of the 
client implementation runs in a browser environment. However, some of the chosen protocols from 
HbbTV 2.0, namely the discovery part of DIAL and the wall clock synchronisation of DVB CSS, are not 
directly available via standard HTML5 APIs. 

Several frameworks exist that allow to deploy web based applications on all popular mobile 
platforms as Android and iOS. 2-IMMERSE has chosen the Cordova framework that builds native 
applications around a web application and also includes a plugin mechanism. The plugin mechanism 
is used to extend the browser environment for non-standard APIs. 

                                                           
1
 https://github.com/fraunhoferfokus/node-hbbtv 

2
 https://github.com/bbc/pydvbcss 

https://github.com/fraunhoferfokus/node-hbbtv


 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 36 (of 46)  © 2-IMMERSE Consortium 2018 

Two plugins have been identified in the architecture, one for the HbbTV adoption of DIAL and the 
other for DVB CSS. For the Theatre at Home trial, the plugins for Android are integrated. The 
implementation for iOS is work in progress and will be used in addition in the next trials. On Android 
the DIAL implementation is based on the Fraunhofer FOKUS libraries on Github, the DVB CSS library 
was created within the project. For iOS both parts have been created within the project. 

5.5.3 HbbTV Prototype 

Parts of the HbbTV implementation for the Theatre in Home trial has been used as test and demo 
content with TV manufacturers for HbbTV 2.0 prototypes. The DIAL and DVB CSS plugins on Android 
have been tested and showcased with Samsung at IBC 2016. A short video clip of the demonstrator 
(early prototype), that shows the discovery of the TV, launch of an HbbTV app from the companion, 
and finally the media synchronisation between TV and companion, can be found at [20].  

 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 37 (of 46) 

6 Multi-Screen Experience (DMApp) Components 

This section provides details of the specific capabilities of the DMApp Components designed and 
developed for the First Release, with notes on how they are being used within the Theatre at Home 
trial.  

It should be noted that the scope of the first Theatre at Home trial is restricted to a single TV 
Emulator device, which presents content on the main household TV, and a single companion device, 
which presents additional content and allows user interaction with the experience. 

6.1 DMApp Components available in the First Release 

The table below provides a summary of all of the DMApp Components developed for the First 
Release, and hence for the Theatre at Home trial. 

 
Name Description Comments 

Video This is an HLS/DASH player which is 
capable of playing out video and audio on 
the TV emulator or companion device, at 
video resolutions up to 1080p25 with 
stereo audio. Video playback can be 
synchronized between devices and  

In Theatre at Home, this component 
is used to present the theatre 
production on the TV emulator plus 
additional on-demand video content 
on the companion devices before 
and after the show.  

Scrolling Text This presents scrolling synchronised text, 
such as the script of a play. It will include 
synchronised buttons to show actor and 
other information. 

The provision of a synchronized 
scrolling script on the TV emulator is 
a key feature of Theatre at Home. 

Title Card This presents an opening screen for the 
entire experience. 

 

Article This can be used to present a range of 
additional content, including 
cast/creatives bios. Content is authored 
using a simple markdown format and the 
viewing position within the article can be 
synchronized between multiple instances 
of the component. 

In Theatre at Home, Article 
components on both the TV 
Emulator and companion device are 
used to present a wide range of 
additional content. During the show, 
this is restricted to the companion 
only.  

Article Controls This enables the user to interact with 
content presented in the Article 
component. 

For Theatre at Home, the control 
options provide the ability to scroll 
up and down within the Article, and 
is only available on the companion. 

Image This presents a static image on the 
screen. 

In Theatre at Home, image content is 
shown on both the TV Emulator and 
companion device. An Image 
component is also used to notify 
users that the show will be starting 
imminently. 

https://gitlab-ext.irt.de/2-immerse/client-api/blob/master/doc/component-params.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/scroll-text/README.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/article
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/image/README.md


 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 38 (of 46)  © 2-IMMERSE Consortium 2018 

Text Chat This enables text chat to be presented 
and displayed, including conversation 
history. 

Text chat is a key feature of Theatre 
at Home and is available on both the 
TV Emulator and Companion at all 
times.  

Text Chat 
Controls 

This provides a UI for posting messages to 
the Text Chat component. 

Text Chat Controls are only available 
on the companion device. 

Video Chat This enables multi-party audio/video chat 
between households (contexts). It co-
ordinates the other Video Chat 
components and optionally presents 
video thumbnails which represent other 
locations in the call. 

The initial Theatre at Home trial only 
involves pairs of households and so 
the video thumbnail presentation is 
not presented. 

Video Chat 
View 

This presents the remote video stream of 
currently active speaker in a Video Chat 
session and a picture-in-picture view of 
the local camera stream. 

For Theatre at Home, Video Chat is 
only presented before and after the 
show and during the interval. The 
Video Chat View is always shown on 
the TV Emulator.  

Video Chat 
Controls 

This provides a control UI for a Video 
Chat session, including microphone and 
speaker level controls and an optional 
‘push-to-talk’ button. 

The Video Chat Controls are only 
available on the companion device. 

Component 
Switcher 

This key component provides a UI to 
enable different parts of the experience 
(and hence DMApp Components) to be 
selected. It is responsive to the device on 
which it is running and can be ‘collapsed’ 
so that it occupies minimal screen space 
when it is not needed. 

A simplified Component Switcher 
has been implemented for Theatre 
at Home which allows content to be 
selected for presentation in the 
Image and Article components only. 
At this time, it is designed for use in 
a landscape aspect on a tablet device 
only. 

 

https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/text-chat/README.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/text-chat-controls/README.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/text-chat-controls/README.md
https://gitlab-ext.irt.de/2-immerse/videochat/blob/master/components/video-chat/README.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/component-switcher/README.md
https://gitlab-ext.irt.de/2-immerse/dmapp-components/blob/master/components/component-switcher/README.md


 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 39 (of 46) 

6.2 DMApp Components in the near-term plan 

In order to meet the timescales required for the Theatre at Home trial, a small number of lower-
priority DMApp Components were not completed. The table below summarises these, some of which 
may be made available in the near term for evaluation by triallists. 
 
Name Description Comments 

Timed Text This provides the ability to present text at 
specific timecodes, such as subtitle text 
(usually on one or two lines). 

The Scrolling Text component has 
reduced the need for subtitles within 
the Theatre at Home trial. 

Notification This displays general purpose 
notifications, such as time until the 
performance starts, or when others have 
joined. The notification content could be 
text, graphics or audio, and could be 
animated. 

As explained above, notifications 
have been implemented using an 
Image component in the first version 
of Theatre at Home, although this 
component would offer a more 
flexible and visually appealing 
solution. 

Like Widget This provides a user input to express a 
‘like’ preference, and presents 
aggregated like data back to users. 

This component would be presented 
on the companion device. 

 

 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 40 (of 46)  © 2-IMMERSE Consortium 2018 

7 Production Tools 

This section describes the production tools used for creating the Theatre at Home experience. The 
authoring process of this first production has been analysed and will direct further development of 
more advanced production tools. 

Production of a multi-screen experience can be an iterative process. A production cycle involves 
design, preparation of resources, creation of the experience and evaluation of the result. In this 
section we describe this workflow and the tools used in each of these phases. 

 

 

Figure 12: Examples of wireframes used to visualise the Theatre at Home multi-screen experience. 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 41 (of 46) 

7.1 Design 

The initial Theatre at Home use case has been described in the project plan. This initial concept was 
leading in creation of a document describing the experience in more detail, including priorities to 
certain aspects. This description served to prioritise the development of DMApp Components as 
presented in the previous section. 

Using graphic design tools, wireframes such as those shown in Figure 12 were produced to visualise 
an impression of the multi-screen components. These wireframes and the list of essential and high 
priority components that evolved in turn was input to further streamline the concept of the 
experience. 

This “final” concept was documented in a table specifying different phases of the experience, and for 
each phase which components should be active on which device, that is, showing up on the 
communal screen on a personal device or on both. 

An essential aspect of the design of the multi-screen experience has been creating a list of all 
resources needed. These included videos of an introduction, of the play itself, and videos for 
promotion, pictures of the rehearsal and of individual actors, texts describing the synopsis of the 
play, the bios and other relevant information, and special files e.g., for timed text and subtitles. 

7.2 Preparation 

All resources have to be collected and uploaded to the server. For this we make use of either a shell 
script or FileZilla [21]. However, first the resources may have to be converted to the appropriate 
formats. 

To support MPEG-DASH, an adaptive bitrate streaming technique that enables high quality streaming 
of media [22], all video material has to be converted by breaking the content into a sequence of 
small HTTP-based file segments. In this way the content is made available at a variety of different bit 
rates. 

All text that will be presented using the Article component (see previous section) has to be converted 
to Markdown (a lightweight markup language [23] with plain text formatting syntax designed so that 
it can be converted to HTML). For this we used a tool called Pandoc [24]. 

For timed text to be presented by the Scroll-text component input has to be presented in a specific 
JSON format that specifies text, category and timing. This format can be created using a text timing 
editor developed for this purpose. The editor using this tool can insert timestamps into the 
document while watching the video (see Figure 13 below). 

 



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 42 (of 46)  © 2-IMMERSE Consortium 2018 

 

Figure 13: Editor for timed text annotations 

Conventional image processing tools were needed to produce images of different resolutions, e.g. 
the Component Switcher needs thumbnails of the images of actors to be used as buttons to bring up 
information on that actor. 

 

7.3 Creating the Experience 

An experience is defined by its looks (the intricacies of styling has been described in section 5.4), by 
its temporal aspects (specified in a timeline document) and by its spatial aspects (specified by a 
layout document). Creating an experience involves creating a global style sheet (see 5.4.5) and 
timeline and layout documents and these documents need to be uploaded to the server. 

7.3.1 Timeline Document 

The temporal aspects of the experience (in essence: which DMApp Components are active at a given 
time) are specified by the Timeline Document. As explained in Section 2, the format of timeline 
documents is inspired by SMIL and is tailored to the 2-IMMERSE Timeline Service, which orchestrates 
media objects running on multiple devices. 

Timeline documents have been created manually using an XML syntax editor [25]. 



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 43 (of 46) 

7.3.2 Layout Document 

As explained in Section 2, the Layout Document specifies for each DMApp Component within the 
DMApp the layout constraints that will be taken into account by the Layout Service whenever layout 
is evaluated. 

The layout requirements document has a JSON format. This document has been created manually 
using a JSON-compliant syntax editor [25]. 

7.3.3 Validation 

The syntax of the documents created can be easily checked by the editor tools, yet further validation 
(e.g. verifying the attributes of elements) is recommended. For this we developed several validation 
tools. 

A timeline document can be validated with a tool running in a terminal window: 

validate-timeline.sh --attributes --trace sample-dmapp/timeline.xml 

The textual output of this validation tool includes errors, warnings, and the --trace option makes it 
report on activities of the Timeline Service that would be initiated at run time. 

Similarly, the layout document can be validated by 

validate-layout.sh sample-dmapp/layout.JSON 

If you also want to verify that all DMApp Components that occur in the timeline document are 
mentioned in the layout specification you use: 

validate-timeline.sh --attributes --trace --layout sample-dmapp/layout.JSON 
sample-dmapp/timeline.xml 

Optionally, documents can be run with the symbolic execution engine. 

dryrun.sh --layoutRenderer –kibana --layoutDoc https://origin.2-Immerse.advdev.tv/dmapps/sample-
dmapp/layout.JSON 
--timelineDoc 
https://origin.2-Immerse.advdev.tv/dmapps/sample-dmapp/timeline.xml 

This tool produces text output description of components becoming active. The optional parameter 
`--layoutRenderer` makes it open a browser window that will give you a live preview of where things 
will be rendered. The `--kibana` option opens a browser window that will show you all the output of 
the timeline and layout services for this run. 

It is possible to use the `dry-run` script to test multiple devices at the same time. 

7.4 Evaluation 

For evaluation of the multi-screen experience we created different versions of the timeline 
documents, all of these sharing the same layout document. 

1. We created timeline documents for each of the distinguishable phases of the Theatre at 
Home experience in order to be able to evaluate these individual phases on visual 
appearance, focusing on layout and styling. This visual inspection resulted in (re)placing 
some of the components. 

2. We created a 1-minute and a 10-minute version of the full experience, running through each 
of the phases quickly. In this way we could evaluate transitions both technically as well as on 
feel: the (set of) components becoming active and inactive. (This option also turned out to be 
very useful for debugging components and services). 

https://origin.2immerse.advdev.tv/dmapps/sample-dmapp/layout.json
https://origin.2immerse.advdev.tv/dmapps/sample-dmapp/layout.json


 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 44 (of 46)  © 2-IMMERSE Consortium 2018 

3. A medium length experience (1-hour) was created to get a feel for the experience (this 
version was used in the so called “dress rehearsal”). 

4. Finally, we have the full length experience to be evaluated on user satisfaction. 

A future production tool should facilitate the functionality now obtained by these different versions 
of the timeline document.  



 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 
Description of First Release  

 

© 2-IMMERSE Consortium 2018 Page 45 (of 46) 

8 Conclusion 

This document has described the first release of the 2-IMMERSE Distributed Media Application 
Platform, Multi-Screen Experience Components and Production Tools that have been developed for 
the project’s Theatre at Home service prototype. The highlights of this first release have included: 

 A core platform based on Mantl, a modern platform for rapidly deploying globally-distributed 
services, supported by a basic Origin Server for the hosting of digital content assets, DMApp 
Components, timeline and layout documents.  

 The first versions of the Timeline and Layout Services, which are unique to 2-IMMERSE and 
enable the orchestration of a distributed, multi-screen experience. 

 Lobby and Call Server functions to enable text and video chat using WebRTC technology within 
the Theatre at Home experience. 

 Deployment of the Shared State Service from the FP7 MediaScape project to provide a repository 
for key information which must be shared between different clients participating in a multi-
screen experience. 

 A simplified inter-home synchronisation solution implemented using the WallClock service and 
the Shared State Service. 

 A flexible logging and analysis infrastructure which allows logs from 2-IMMERSE services and 
client applications to be automatically processed, presented and analysed. 

 A Distributed Media Application (DMApp) for the Theatre at Home service prototype, comprising 
a collection of applications which are co-ordinated to deliver a multi-screen experience within a 
household. 

 12 reusable DMApp Components developed for the Theatre at Home service prototype, 
including components which play audio and video, present text and image content and provide 
real-time video communication and text chat.  

 A combination of off-the-shelf and bespoke tools used to support the authoring of the Theatre at 
Home DMApp. 

As the first instance of a working platform for the delivery of an interactive, object-based multi-
screen experience, this forms a vital foundation for the subsequent prototypes which will be 
developed and taken to trial in the next two years of the project.  

The project’s second technology release will be delivered in just under a year’s time and will 
document the evolution of this platform to support the MotoGP and Theatre in Schools trials. While 
the authoring process for the Theatre at Home DMApp has been largely manual, it has been carefully 
studied and will be assisted by the development of novel production tools during the coming year.  
  



 

 
 

D2.3 - Distributed Media Application Platform 
and Multi-Screen Experience Components: 

Description of First Release 

 

Page 46 (of 46)  © 2-IMMERSE Consortium 2018 

9 References 

All the web references cited below were correct as of 11th January 2018. 

[1] 2-IMMERSE Architecture and API Reference wiki, https://2immerse.eu/wiki/api/ 

[2] Mantl platform documentation, http://docs.mantl.io/en/latest/  

[3] Marathon documentation, https://mesosphere.github.io/marathon/ 

[4] Mesos documentation, http://mesos.apache.org/documentation/latest/ 

[5] Docker website, https://www.docker.com/  

[6] Traefik website, https://traefik.io/ 

[7] Kong website, https://getkong.org/ 

[8] Jenkins website, http://jenkins-ci.org/ 

[9] Osprey page on GitHub, https://github.com/mulesoft/osprey 

[10] Redis website, http://redis.io 

[11] Simple-Peer page on GitHub, https://github.com/feross/simple-peer 

[12] socket.io.redis adapter page on GitHub, https://github.com/socketio/socket.io-redis 

[13] Shared State API on MediaScape project website, http://mediascapeproject.eu/shared-
state.html 

[14] Shared State library on GitHub, https://github.com/mediascape/shared-state 

[15] Elastic Stack website, https://www.elastic.co/products 

[16] WallClock Service on 2-IMMERSE GitLab, https://gitlab-ext.irt.de/2-immerse/wallclock-service 

[17] Synchronisation protocols on 2-IMMERSE GitLab, https://gitlab-ext.irt.de/2-immerse/sync-
protocols 

[18] dvbcss-clocks library on 2-IMMERSE GitLab, https://gitlab-ext.irt.de/2-immerse/dvbcss-clocks 

[19] Cordova website, https://cordova.apache.org/ 

[20] Video clip of HbbTV 2.0 DIAL and DVB CSS functionality, http://hbbtv-
live.irt.de/hbbtv2/video/190902_Sync-Demo.mpg  

[21] Filezilla website, https://filezilla-project.org 

[22] Wikipedia reference for MPEG-DASH, https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming 

[23] Wikipedia reference for Lightweight markup languages, 
https://en.wikipedia.org/wiki/Lightweight_markup_language 

[24] Pandoc website, http://pandoc.org 

[25] Atom website, https://atom.io/  

https://2immerse.eu/wiki/api/
http://docs.mantl.io/en/latest/
https://mesosphere.github.io/marathon/
http://mesos.apache.org/documentation/latest/
https://www.docker.com/
https://traefik.io/
https://getkong.org/
http://jenkins-ci.org/
https://github.com/mulesoft/osprey
http://redis.io/
https://github.com/feross/simple-peer
https://github.com/socketio/socket.io-redis
http://mediascapeproject.eu/shared-state.html
http://mediascapeproject.eu/shared-state.html
https://github.com/mediascape/shared-state
https://www.elastic.co/products
https://gitlab-ext.irt.de/2-immerse/wallclock-service
https://gitlab-ext.irt.de/2-immerse/sync-protocols
https://gitlab-ext.irt.de/2-immerse/sync-protocols
https://gitlab-ext.irt.de/2-immerse/dvbcss-clocks
https://cordova.apache.org/
http://hbbtv-live.irt.de/hbbtv2/video/190902_Sync-Demo.mpg
http://hbbtv-live.irt.de/hbbtv2/video/190902_Sync-Demo.mpg
https://filezilla-project.org/
https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming
https://en.wikipedia.org/wiki/Lightweight_markup_language
http://pandoc.org/
https://atom.io/

