

© 2-IMMERSE Consortium 2017 Page 1 of (135)

Grant Agreement number: 687655 ð 2- IMMERSE ð H2020- ICT - 2015

Directorate General for Communications Networks, Content and Technology
Innovation Action

ICT-687655

D2.1 System Architecture

Due date of deliverable: 31 March 2016

Actual submission date: 10 May 2016

Resubmitted with minor changes: 14 July 2017

Start date of project: 1 December 2015 Duration: 36 months

Lead contractor for this deliverable: Cisco

Version: 14 July 2017

Confidentiality status: Public

D2.1 System Architecture

Page 2 of (135) © 2-IMMERSE Consortium 2017

Abstract

This document describes the system architecture being developed by the 2-IMMERSE project. This

architecture is designed to enable the four multi-screen service prototypes that will be delivered

through the project. The System Architecture is layered as a set of platform services, a client

application architecture and production architecture. The system architecture is a work in progress; it

will evolve both as we refine it and specify it in more detail, and as we deliver each of the multi-screen

service prototypes through the project.

Target audience

This is a public deliverable and could be read by anyone with an interest in the system architecture

being developed by the 2-IMMERSE project. As this is inherently technical in nature, we assume the

audience is technically literate with a good grasp of television and Internet technologies in particular.

We have included a Technology Overview section that summarises a range of technologies that are

potentially applicable within the project. This document will be read by the Project Consortium as it

defines the system architecture that will be adopted and evolved throughout the project.

Disclaimer

This document contains material, which is the copyright of certain 2-IMMERSE consortium parties,

and may not be reproduced or copied without permission. All 2-IMMERSE consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the 2-IMMERSE consortium as a whole, nor a certain party of the 2-IMMERSE consortium

warrant that the information contained in this document is capable of use, or that use of the

information is free from risk, and accept no liability for loss or damage suffered by any person using

this information.

This document does not represent the opinion of the European Community, and the European

Community is not responsible for any use that might be made of its content.

Impressum

Full project title: 2-IMMERSE

Title of the workpackage: WP2 Distributed Media Application Platform

Document title: D2.1 System Architecture

Editor: James Walker, Cisco

Workpackage Leader: James Walker, Cisco

Project Co-ordinator: Helene Waters, BBC

Project Leader: Phil Stenton, BBC

This project is co-funded by the European Union through the ICT programme under Horizon2020.

Copyright notice

© 2017 Participants in project 2-IMMERSE

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 3 of (135)

%ØÅÃÕÔÉÖÅ 3ÕÍÍÁÒÙ

This document describes the 2-IMMERSE system architecture. The system architecture is a work in

progress. We expect that the architecture will evolve both as we refine it and specify it in more detail

(for example through detailed component interface specifications) and as we address the expanding

scope of the four multi-screen service prototypes through the project. Within the project, we will keep

this document updated to reflect this development.

As work on the architecture started before the D4.1 Prototype Service Descriptions deliverable was

available, we have adopted a set of assumed Core Technical Requirements to enable us to proceed;

these are presented in this document. Subsequently, with the release of D4.1 we have been able to

address requirements emerging from the service prototype descriptions. We have included the set of

prioritised user stories from the initial service prototype (Watching Theatre at Home) in this

document.

We have taken a ólayeredô approach to documenting our system architecture in order to maximise

clarity and maintain an appropriate óseparation of concernsô:

¶ The platform is defined as a set of services which support applications running on client

devices. In defining these services we have described the service functionality, key interfaces

and technology choices where they have been made.

¶ The client application architecture defines a common HTML and JavaScript environment for

the Distributed Media Application components, and the underlying application that manages

their lifecycle and presentation. It also details how this is supported on the various devices that

participate in the system.

¶ The production architecture is defined at a high level; however, we note that a detailed,

generalised production architecture is difficult to create, and specific production architecture

will be determined for each service prototype.

The document also includes a comprehensive Technology Overview section that summarises a range

of technologies that are potentially applicable to the 2-IMMERSE project.

D2.1 System Architecture

Page 4 of (135) © 2-IMMERSE Consortium 2017

,ÉÓÔ ÏÆ !ÕÔÈÏÒÓ
Mark Lomas - BBC

Rajiv Ramdhany - BBC

Andy Gower - BT

Ian Kegel - BT

Jonathan Rennison - BT

Martin Trimby - BT

Doug Williams - BT

Ian Wray - ChyronHego

James Walker - Cisco (also editor)

Pablo Cesar - CWI

Jack Jansen - CWI

Michael Probst - IRT

Christoph Ziegler - IRT

John Wyver - Illuminations

Reviewers
Ian Kegel - BT

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 5 of (135)

4ÁÂÌÅ ÏÆ ÃÏÎÔÅÎÔÓ

Executive Summary .. 3

List of Authors ... 4

Table of contents .. 5

Abbreviations and Definitions .. 10

1 Use Case Summary .. 13

Service Prototype Summaries ... 13

2 Requirements ... 15

2.1 Overview ... 15

2.2 Core Technical Requirements ... 16

3 System Architecture - Overview .. 18

4 Platform Architecture ... 19

5 Application Architecture .. 21

5.1 High-level Requirements ... 21

5.1.1 Sustainable Application Development .. 21

5.1.2 Presentation ... 21

5.1.3 Multi -device Support ... 22

5.2 Application Stack .. 22

5.2.1 Web Applications and Reusable Components... 22

5.2.2 Host Application .. 23

5.2.3 Launcher Application .. 23

5.3 Device Roles.. 23

5.3.1 Mobile & Desktop Companion Device Stacks .. 24

5.3.2 HbbTV Master Device Stack... 25

5.3.3 Emulated HbbTV Master Device Stack .. 25

5.3.4 Headless Companion Device Stack ... 25

5.4 Web Application Architecture ... 26

5.5 Application Architecture Technology Choices ... 27

5.6 Deployment Considerations .. 28

6 Service Architecture .. 29

6.1 Service Descriptions .. 31

6.1.1 Service Registry .. 31

6.1.2 Device Discovery .. 31

6.1.3 Timeline... 34

D2.1 System Architecture

Page 6 of (135) © 2-IMMERSE Consortium 2017

6.1.4 Layout .. 34

6.1.5 Server-Based Composition .. 35

6.1.6 Timeline Synchronisation .. 36

6.1.7 Content Protection and Licensing ... 40

6.1.8 Identity Management and Authentication ... 41

6.1.9 Session (Lobby) and Call Services .. 44

6.1.10 Logging ... 45

6.1.11 Analytics .. 47

6.1.12 Origin Server / CDN .. 48

6.1.13 TV Platform ... 49

7 Production Architecture ... 50

7.1 Production Content and Data Flows .. 50

7.1.1 Timeline Description ... 50

7.1.2 Layout Requirements .. 50

7.1.3 Media Objects .. 50

7.1.4 DMApp Components .. 51

7.1.5 Native Companion Applications ... 51

7.1.6 HbbTV Applications ... 51

7.1.7 Live Trigger Events ... 51

7.2 Prototype Service 1 ï Watching Theatre at home ... 51

7.2.1 Existing Workflow .. 51

7.2.2 Additional Content and Data Flows .. 52

7.3 Prototype Service 2 ï Theatre in School ... 53

7.3.1 Existing Workflow .. 53

7.3.2 Additional Content and Data Flows .. 53

7.4 Prototype Service 3 ï MotoGP at home .. 53

7.4.1 Existing Workflow .. 53

7.4.2 Additional Content and Data Flows .. 54

7.5 Prototype Service 4 ï Watching Football in a Pub .. 54

7.5.1 Existing Workflow .. 54

7.5.2 Additional Content and Data Flows .. 55

7.6 Media formats used by 2-IMMERSE Production Associates ... 55

7.6.1 BT Sport HD Production ... 55

7.6.2 BT Sport UHD Production .. 56

7.6.3 BT Sport Delivery ... 57

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 7 of (135)

7.6.4 Royal Shakespeare Company Delivery ... 57

7.7 Testing, Monitoring and Analytics .. 58

7.7.1 Overview ... 58

7.7.2 Testing ... 59

7.7.3 Monitoring ... 59

7.7.4 Analytics .. 59

8 Requirements ï Architecture Mapping ... 60

9 Technology Overview .. 62

9.1 System Setup ... 63

9.1.1 DIAL ... 63

9.1.2 Device Discovery in HbbTV 2.0 ... 64

9.1.3 Second-Screen Framework .. 66

9.1.4 W3C Presentation API .. 67

9.1.5 W3C Remote Playback API .. 68

9.1.6 UPnP Multiscreen .. 69

9.2 Distributed Media Applications .. 70

9.2.1 Overview of application-layer technologies .. 70

9.2.2 Meteor ... 71

9.2.3 Web Components .. 73

9.2.4 Television Application Layer (TAL) ... 75

9.2.5 WebRTC .. 76

9.3 Layout and Composition ... 78

9.3.1 Spatial .. 78

9.3.2 Temporal ... 79

9.3.3 Composition .. 83

9.4 Device and content synchronisation .. 85

9.4.1 HbbTV / DVB CSS synchronization ... 85

9.4.2 Content Synchronisation Events.. 87

9.4.3 Ad Insertion/Ad Replacement ... 88

9.5 Authentication and Security .. 89

9.5.1 Access Control .. 89

9.5.2 Cross Platform Authentication .. 92

9.6 Production ... 93

9.6.1 Object-based Production Tooling .. 93

9.6.2 TRACAB ... 95

D2.1 System Architecture

Page 8 of (135) © 2-IMMERSE Consortium 2017

9.6.3 Virtual Placement .. 96

9.7 Media and Metadata Delivery ... 98

9.7.1 Adaptive Streaming ... 98

9.7.2 Media formats supported by HbbTV ... 100

9.7.3 Dolby AC-4 ... 102

9.7.4 360 degree / Immersive Video .. 103

10 Conclusions and Next Steps .. 108

 Watching Theatre at Home User Stories ... 109 Annex A

 Intra -Location and Inter-Location Media Synchronisation with DVB-CSS 115 Annex B

B.1 Timeline Correlations .. 115

B.2 WallClock Synchronisation ... 115

B.3 Timeline Synchronisation Service ... 116

B.4 Reusing DVB-CSS Interfaces ... 117

B.5 Site-Local/Intra-Home Synchronisation .. 118

B.6 Inter-Home Synchronisation ... 120

B.7 Intra-Home Synchronised Experiences Merging into an Inter-Home Synchronised

Experience ... 121

 Server-based Media Composition .. 123 Annex C

C.1 Goal ... 123

C.2 Example compositions .. 123

C.2.1 Example #1 .. 123

C.2.2 Example #2 .. 123

C.2.3 Example #3 .. 124

C.2.4 Further examples ... 124

C.3 Functional description ... 125

C.4 Functional Flow ... 125

C.5 Composition Latency .. 127

C.6 Compositing Devices .. 127

C.6.1 Local Versus Remote Compositing ... 127

C.6.2 Thin Clients ... 128

C.7 Interfaces ... 128

C.8 Selected Technology ... 128

 Experience Deployment .. 129 Annex D

D.1 2-IMMERSE Native Application Deployment ... 129

D.2 HbbTV 2.0 TV/CSS Application Deployment .. 129

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 9 of (135)

D.3 HTML Television Application Deployment ... 130

D.4 Broadcast-Dependent Application Deployment .. 130

D.5 Broadcast-Independent Application Deployment ... 130

D.6 HTML Companion Application Deployment ... 131

D.7 Content Deployment .. 131

D.8 Web Application Life Cycle .. 131

D.9 TV Versus CSS Initiated Deployment .. 131

D.10 Upgrades .. 133

 Testing and Validation .. 134 Annex E

E.1 System testing.. 134

E.2 Content/user experience application testing .. 135

D2.1 System Architecture

Page 10 of (135) © 2-IMMERSE Consortium 2017

!ÂÂÒÅÖÉÁÔÉÏÎÓ ÁÎÄ $ÅÆÉÎÉÔÉÏÎÓ

AVC Advanced Video Coding (H.264/MPEG-4 Part 10 AVC)

Box A metaphor for users sharing an experience (i.e. in the same session) but

in different physical locations (contexts), based on the concept of the

theatre box.

Context One or more connected devices collaborating together to present a media

experience. Each context has a contextId unique to its session. There can

be many contexts on a single LAN, but a device can only be a member of

one context at a time. Devices belonging to the same context must be able

to discover each other using DIAL. Devices can join or leave a context at

any time.

Correlation The relationship between two timelines specified as a pair of timestamps

(one from each timeline) and a speed value

CSA Companion Screen Application

CENC Common Encryption

CSS-CII DVB-CSS Content Identification & other Information protocol

CSS-TS DVB-CSS Timeline Synchronisation protocol

CSS-WC DVB-CSS WallClock Synchronisation protocol

DASH Dynamic Adaptive Streaming over HTTP

DMApp Distributed Media Application ï a set of software components that can be

flexibly distributed across a number of participating multi -screen devices.

DMApp
Component

A software component that renders media object(s), or supports viewer

interactions.

DVB-CSS $6"ȭÓ #ÏÍÐÁÎÉÏÎ 3ÃÒÅÅÎ ÁÎÄ 3ÔÒÅÁÍÓ ÓÐÅÃÉÆÉÃÁÔÉÏÎ

Experience The experience of consuming a Distributed Media Application across

multiple participating devices in a context.

Experience

Timeline

Time since the start of an experience. The progress of time during an

experience and the time positions when óactivitiesô such as the playback of

a media object are scheduled to happen.

HbbTV Hybrid broadcast broadband TV

HEVC High Efficiency Video Coding (H.265/MPEG-H Part 2 HEVC)

HLS HTTP Live Streaming

Lobby A construct that allows groups of users who are members of the same

session (but potentially different contexts) to come together and

communicate. A session can have many lobbies or ñroomsò. Users can join

or leave a lobby at any time and new lobbies can be created and destroyed

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 11 of (135)

at any time.

Media Composition

Protocol

A protocol for describing how media objects / feeds should be composited

together over time to produce a presentation optimised for a particular

presentation device.

Media Object

Timeline / DMApp

Component

Timeline

The playback progress of a media object. This can be reported as time

since start of the media playback in seconds. Alternatively, presentation

timestamps signalled in the media stream e.g. PTS or TEMI in broadcast

streams can be reported.

Media Objects Media streams or assets that comprise an experience. Includes todayôs

typical programme elements (main A/V, audio description, subtitles etc.),

but would also include clean feeds, audio commentary, auxiliary camera

feeds, metadata feeds, images, graphics, A/V clips (e.g. highlights /

replays).

MSAS Media Synchronisation Application Server ï a server entity in HbbTV2.0

(and DVB-CSS) stacks that collects current playback timestamps from a

number of synchronisation clients and synchronises them.

Session One or more contexts that are synchronised together into a shared media

experience and presented simultaneously across sites. Contexts can join

and leave a session at any time. Each session has a globally unique

sessionId.

Synchronisation

Timeline

A selected timeline to which a DMApp component will align itself e.g. the

experience timeline. A correlation between the Synchronisation Timeline

enables conversion of time values from the DMApp component timeline

and the Synchronisation Timeline.

Synchronisation

Server

A server entity that collects the current timeline position from the

Synchronisation Timeline and distributes this timestamp to

synchronisation clients connected to it.

Synchronisation

Client

A client entity that receives Synchronisation Timeline updates from the

Synchronisation Server and synchronises to the expected timeline position

of its own media playback based on the update.

Timeline The notion of progress of time or media playback progress. A timeline

may have its own time representation i.e. a tick rate (ticks per second) and

a speed (speed at which the timeline progresses e.g. 1.0, 2.0, etc.).

Timeline Updates Intermittent presentation timestamps indicating progress along the

timeline. Specified in the units of the timeline. Usually specified as a pair

of timestamps, the second timestamp representing the WallClock time

when the presentation timestamp was read.

TLS Transport Layer Security

TS Transport Stream

User Someone consuming the media experience within a given context and

session. A user has a userId, obtained by logging into one or more devices

belonging to a context

D2.1 System Architecture

Page 12 of (135) © 2-IMMERSE Consortium 2017

UX Engine User Experience Engine - orchestrates the distributed multi-screen

experience, managing each of the participating client devices, and

adapting the presentation to the userôs environment, their participating

devices and preferences.

WallClock A shared clock representing a common notion of time by all entities

enabling or participating in an experience.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 13 of (135)

1 Use Case Summary

The 2-IMMERSE project will develop four service innovation prototypes of multi-screen

entertainment experiences. Unlike existing services, the content layout and compositions will be

orchestrated across the available screens and an object-based production approach will enable the

experiences to be immersive, personalised and efficiently delivered.

Descriptions of these service prototypes and user stories derived from them form the basis of the

requirements for the system architecture. These are documented in project deliverable D4.1. The

service prototype descriptions are at different levels of maturity, which reflects that the trials of the

service prototypes are planned at different points within the project.

A brief summary of the service prototypes is included below for reference. For the Watching Theatre

at Home service prototype, which is the first to be trialled, a set of user stories has been generated.

These are included in Annex A - Watching Theatre at Home User Stories, also for reference. These

include a set of agreed priorities. User stories have not yet been generated for the other service

prototypes but will be in due course.

Service Prototype Summaries

Watching Theatre At Home

This service innovation prototype is called Theatre at

Home because it offers an enhanced social experience for

users in a domestic context to watch a live or ñas liveò

broadcast of a theatre performance. The user will have a second screen

device that can access synchronized information streams directly from the

provider of the broadcast and from the web through social media

applications including Twitter but which can also, at times, feature audio

and video chat with others who are watching.

The service innovation prototype will enable a user to watch a theatre production, shot with multiple cameras,

as either a live or an óas liveô experience. Viewers will be able to contribute to and monitor different forms of

feedback throughout the performance, and to discuss it with others who are watching at the same time, either in

a different room or in a different home.

Owner: John Wyver (Illuminations) Rights Originator : Royal Shakespeare Company

Watching Theatre At School

This service innovation is called Theatre in School. This

service enables pupils in schools across the country to watch a filmed

performance of a play performed by the Royal Shakespeare company.

Pupils are able to augment the main filmed presentation of a play with

access to related supporting content and experiences to help them deepen

their understanding of the play. This related content may include a

synchronised transcript of the play, character summaries, short films

featuring the talent in the play and even live communication session with

the actors and other creative talent associated with the production.

Owner: John Wyver (Illuminations) Rights Originator : Royal Shakespeare Company

D2.1 System Architecture

Page 14 of (135) © 2-IMMERSE Consortium 2017

Watching MotoGP at Home

This service innovation will provide a user with a personalised experiences that

can be controlled to suit a viewerôs interests/experience with the sport. It will

allow video footage and telemetry data to be displayed on a mixture of a large

TV and on smaller personal screens. The trials with consumers will take place in

multiple sites. Research insights will be captured from device/service

instrumentation and follow-up qualitative questionnaires and interviews with

trialists. We also plan to carry out VIP demos that could be held both at the track

and at other VIP locations (BT Centre, BBC, Cisco, etc.).

The trial will focus on the Great Britain MotoGP race (September in 2017).

Owner: Andy Gower (BT) Rights Originator : Dorna Motor Sports

Watching Football In A Pub

This service innovation relates to an experience designed to suit UK city centre pubs

showing sport. It will mix large screen viewing with

opportunities to access content and interactive experiences that may be playful

and promotional on personal screens. We anticipate a system capable of

supporting a diverse range of experiences centred, ultimately, on a single sport

event but that finds a way to encourage and promote business within the pub

through promotions and possibly competitions.

The trial will be centred on the Emirates FA Cup Final that will be held in May 2018.

Owner: Martin Trimby (BT) Rights Originator : The Football Association

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 15 of (135)

2 Requirements

2.1 Overview

As WP2 has started to consider the 2-IMMERSE system architecture, WP4 has been defining the trial

scenarios in parallel, with D4.1 only becoming available for a short while prior to this deliverable. We

have defined a set of Core Technical Requirements to allow us to develop the architecture. These Core

Technical Requirements are largely based on the vision outlined in the 2-IMMERSE project proposal

and are described in more detail in the following section.

Now that D4.1 is available, the architecture and core requirements will be reviewed against the details

of each of the four trial scenarios as they are defined at this early stage of the project. WP2 will evolve

the architecture to reflect the requirements of each of the 2-IMMERSE field trials as they emerge.

In the original 2-IMMERSE project proposal, we said:

ñ2-IMMERSE will develop an extensible, standards based delivery platform based on re-usable

components that will accelerate the development of new immersive multi-screen experiences,

accelerate the take-up of the HbbTV2.0 standard and contribute towards its evolutionò

From this statement, we can define some guiding principles for how we approach the architecture and

development of the platform:

1. Sustainable production of live multi-device experiences ï i.e. a cost-effective means to make

multi-device experiences in volume (with re-use rather than expensive óone-offsô).

2. Integrate with existing TV broadcasting services, using appropriate standards and practise to

produce an industrial strength solution.

3. Accelerate uptake of the HbbTV2.0 and contribute towards its evolution.

4. Leave something thatôs plausible as a foundation for others to build on. Our solution has to be
extensible, has to use open source and potentially be open sourced, and it has to be made

accessible to developers.

5. Object-based broadcasting approach ï Media is captured and delivered as objects.

6. Designed to work at scale - It has to work at scale if we want broadcasters to adopt this

technology

Extensibility and re-use are particularly important; the ability for us to add new services to the

platform as the successive service prototypes require additional features, or, for broadcasters to use

and extend the platform after the project is finished is essential. Similarly, for experience producers to

be able to reuse DMApps and DMApp components is essential for sustainable productions.

Architecturally, we are adopting a ómicro-servicesô approach. This is comprised of:

1. Services that are: "Small, focused and doing one thing very wellò

2. The supporting ecosystem and authoring capability for new micro services

Both are extensible, scalable and following industry best practices, will give us a very clear separation

of concerns between our platform services and the supporting infrastructure.

D2.1 System Architecture

Page 16 of (135) © 2-IMMERSE Consortium 2017

Although we are very early in the development cycle, we aspire to the following principles:

Å Early integration

Å Continuous deployment

Å Enterprise level software

Å Focus on security, scalability, robustness and maintenance

2.2 Core Technical Requirements

The following requirements are considered to be essential to the 2-IMMERSE architecture. They have

been inferred from one or more of the four trial scenarios as defined at the beginning of the project.

They are all considered to be essential for the architecture and are deliberately expressed in a solution-

neutral way.

1. Association of multiple connected devices (clients) in a home/school/pub environment, with

detection of device features (discovery and launch).

A multi-screen environment is central to the 2-IMMERSE system, and a key challenge for the

project is to enable experiences to be adapted to arbitrary arrangements of connected devices.

Discovery of such devices and features is one of the first steps towards setting up an experience.

2. Delivery, decoding and rendering of multiple media streams on any client in the environment.

The processes associated with carrying heterogeneous media streams to a client and decoding

them are fundamental to a multi-screen experience. It should be noted that each client may have a

different capacity (for example bandwidth and processing resources) to decode media streams, and

this will need to be taken into account.

3. Composition of media in arbitrary and dynamic layouts/presentations.

Flexible composition is an essential enabler for interactive, personalised and adaptive multi-screen

experiences. The 2-IMMERSE system must enable control of both spatial and temporal media

composition.

4. Synchronised presentation of media between multiple clients in one or more environments.

Some 2-IMMERSE use cases describe shared experiences in which media streams must be

synchronised between multiple devices in the same environment (intra-location synchronisation)

and between devices in multiple environments (inter-location synchronisation).

5. Lobby/chat room to allow clients to meet during an experience.

Some 2-IMMERSE use cases describe experiences which are shared between groups of people in

different locations. A mechanism is therefore required to enable people to join a virtual group as

part of their experience. A lobby or chat room is the standard mechanism for achieving this.

6. Management of user identities to register and authorise access to experiences and enable

presence information to be shared.

2-IMMERSE trials are likely be provided over public networks and therefore need a mechanism to

control access to multi-screen experiences. Individual users (or possibly households) will need to

be identified if experiences are to be personalised or shared between groups in different locations.

Identification is also an important key against which interactions and system behaviour can be

recorded in order to analyse how experiences are being used.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 17 of (135)

7. Real-time audio and video communication between multiple home environments.

Some 2-IMMERSE use cases describe how participants in an experience which is shared between

multiple locations have the ability to see and hear each other during part of the experience. Real-

time communication places additional requirements on clients involved in a multi-screen

experience, including low latency transmission, local capture of audio and video streams and echo

control.

8. Tools to enable production personnel to have live control over aspects of composition in

home/school/pub environments.

9. User interface on one or more clients in the environments to interact with and control aspects

of the experience, which responds to the devices available in the environment.

A key feature of the 2-IMMERSE system is the ability for control of the multi-screen experience

to be shared between its production team and individual users. Both groups must therefore have

sufficient controls to make changes during playout. The type and design of the controls is

prescribed when the experience is created, and on the client side their composition must be

adapted to the client environment.

10. Tools and/or data formats to author a multi-screen experience in terms of layouts, events and

interactions.

2-IMMERSE multi-screen experiences will require a new approach to authoring which is

independent of any specific configuration of devices in the user environment. As a minimum this

will require new data formats to describe the elements of an experience and the rules for how they

can be assembled and interacted with. The project also anticipates the need for new tools to

support this process which reduce the barriers to entry for creative professionals as well as the

impact on the time and cost for creating an experience.

11. Each system component (especially each client) logs key aspects of its behaviour and these

logs are aggregated.

Recording user and system behaviour is an important requirement for the 2-IMMERSE system

because it will provide essential insight into how experiences are being used. By building

integrated multi-screen experiences from the ground up, the project has a unique opportunity to

understand how user attention moves between devices.

12. Offline analysis of client behaviour logs after the event.

2-IMMERSE must provide a mechanism for offline analysis of logs. This does not need to be part

of the 2-IMMERSE system itself and could potentially be achieved by enabling logs to be

imported into third-party tools or platforms.

13. Monitoring of key aspects of the system during operation with option to aggregate and feed

back into the experience.

In addition to recording logs for offline analysis, some 2-IMMERSE use cases describe how data

relating to user interactions and viewing behaviour may be presented within the experience (for

example within a pub environment). The system must therefore make this data available within

both the authoring and delivery/composition processes.

D2.1 System Architecture

Page 18 of (135) © 2-IMMERSE Consortium 2017

3 System Architecture - Overview

We have taken a ólayeredô approach to documenting our system architecture, in order to maximise

clarity, and maintain an appropriate óseparation of concernsô.

Our layers are defined as follows:

¶ Platform Architecture ï the high-level architecture of the 2-IMMERSE platform.

¶ Service Architecture ï the services that comprise the platform.

¶ Application Architecture ï how our client applications are architected.

¶ Production Architecture ï how the production capabilities are architected.

The sections that follow describe each of these architecture layers in turn in detail.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 19 of (135)

4 Platform Architecture

Figure 1 below shows our end-to-end platform architecture at a very high level. This shows a basic

flow from production through to platform services, with clients accessing those platform services to

present experiences to users. The Application Architecture, Platform Services and Production

Architecture are described in detail in the next sections of this document.

Figure 1: High-Level Platform Architecture

Figure 1 shows some example 3
rd
 party Internet services as being separate to the Platform; these would

typically be used by DMApp components to provide content, data and features specific to these

components, but not core system functionality. Examples might include social networks, collaboration

/ real time communications, live data feeds etc.

We also separate third-party app stores e.g. Apple App store (iOS), Google Play Store (Android), and

HbbTV vendor App Stores, as although not considered a core part of the platform, they are a

necessary existing mechanism through which client applications will be made available to end users.

The underlying TV Platform is also shown separately; we assume we will be building on an existing

TV Platform that is capable of delivering live and on-demand content. We have included this in our

service descriptions since it should be considered core, and the production architectures will still need

to be able to deliver content through the TV Platform.

D2.1 System Architecture

Page 20 of (135) © 2-IMMERSE Consortium 2017

Before describing the client application architecture and platform services in detail, we will introduce

or recap some important concepts and terms:

¶ Experience ï The experience of consuming a Distributed Media Application across multiple

participating devices in a context.

¶ Context - One or more connected devices collaborating together to present a media experience.

Each context has a contextId unique to its session. There can be many contexts on a single

LAN, but a device can only be a member of one context at a time. Devices belonging to the

same context must be able to discover each other using DIAL. Devices can join or leave a

context at any time.

¶ User Experience (UX) Engine - orchestrates the distributed multi-screen experience, managing

each of the participating client devices, and adapting the presentation to the userôs environment,

their participating devices and preferences. This has been decomposed into two services;

timeline and layout.

¶ Media Composition Protocol ï a protocol for describing how media objects / feeds should be

composited together over time to produce a presentation optimised for a particular presentation

device.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 21 of (135)

5 Application Architecture

5.1 High-level Requirements

2-IMMERSE multi-screen entertainment experiences are composed of many applications configured

to work together to deliver the look and feel of a single application. 2-IMMERSE calls this collection

a Distributed Media Application, or DMApp.

The application architecture must address the following requirements:

1. Development of experiences must be sustainable.

2. Experiences must be tailored to the content being delivered.

3. The presentation should be consistent on all devices.

4. Functionality must be available on multiple device types.

5.1.1 Sustainable Application Development

Producers need be able to create experiences quickly and efficiently for a large range of programmes if

the multi-screen format is to succeed. DMApp development can be made sustainable by:

1. Exploiting commonality between programmes (i.e. genres)

2. Adopting a library of reusable templates and components that can be re-skinned to capitalise on

prior investment

3. Adopting technology that allows an application to be written once, but deployed to multiple

devices

4. Adopting data-driven components that can be reconfigured for use in different contexts

5. Deferring production decisions to audiences and smart layout engines to reduce the number of

device permutations and configurations to author for and test

Perhaps the most impactful way to reduce the cost of developing an experience is to license

components from 3
rd
 party developers and to foster a community of open source components. This

might be the only option in circumstances where there is limited budget for developing multi-screen

experiences in-house.

5.1.2 Presentation

Consistent appearance of components across all devices has a bearing on the perceived quality of

experience. Moving a component of functionality from one device to another should preserve its

visual appearance. This is difficult without a common renderer running on all devices and it also

implies migration of state.

HbbTV 2.0 provides an application environment based on the open web standards of HTML5, CSS3

and JavaScript. This enables developers to author applications once and use them across a range of

devices. It provides a basis for migrating functionality from one screen to the next, whilst preserving

appearance.

D2.1 System Architecture

Page 22 of (135) © 2-IMMERSE Consortium 2017

5.1.3 Multi -device Support

Companion screen devices arenôt themselves HbbTV 2.0 terminals but they can run environments that

are equivalent using web browsers or native applications that wrap web browser functionality.
1

Using web technology to construct distributed media experiences reduces the number of operating

systems to support, however abstractions such as the Television Application Layer (TAL) may still be

required to address minor incompatibilities between devices.

Homogenising the application run-time environment by using web technology and exposing low-level

media APIs via JavaScript simplifies the task of authoring, testing and deploying a distributed media

experience. It provides a cross-platform óMedia OSô against which 2-IMMERSE experiences are

authored.

5.2 Application Stack

Devices participating in a 2-IMMERSE experience must implement the stack shown below.

Figure 2: Abstract Application Stack

A distributed media experience is composed of several native and non-native applications running on

multiple devices.

5.2.1 Web Applications and Reusable Components

Web applications and reusable components deliver the core user experience. Both are written using

HTML5, CSS3 and JavaScript. Reusable components deliver individual features or act as containers

that aggregate other components together. Components also leverage other units of reuse such as

JavaScript libraries and templates. The Web Application hosts these components and is also

responsible for their life cycle. W3C Web Components are a candidate technology for reusable

components although other choices are available
2
.

1
 See http://www.oipf.tv/web-spec/volume5a.html for minimum browser requirements for HbbTV 2.0.

2
 See https://www.youtube.com/watch?v=5sETJs2_jwo for Netflixôs solution that swaps HTML and CSS for

primitive boxes and pure JavaScript.

http://www.oipf.tv/web-spec/volume5a.html
https://www.youtube.com/watch?v=5sETJs2_jwo

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 23 of (135)

5.2.1.1 Component Life Cycle

Users may personalise their setup by deselecting components or enabling new ones during the

experience. The active set of components is also influenced by companion devices joining and leaving

the experience and by layout changes triggered by the broadcaster.

For example, a user may choose to enable a component from within the virtual lobby of the ótheatre at

homeô use case in response to a recommendation from a friend received by voice chat. The

introduction of this new component may also cause layout changes on other devices.

The active component set can be manually configured from any companion screen device to

personalise the experience. A reusable multi-device configuration component is therefore required.

Administrators may choose to limit the availability of components to certain times or restrict access

through authentication and DRM schemes.

5.2.2 Host Application

The Host Application provides a common runtime environment across all devices and is responsible

for hosting web applications. The Host Application is a native application written using a wrapper

technology such as Cordova or Titanium, or a web browser (running native plugins). On an HbbTV

2.0 terminal device, the host application is an implementation of the HbbTV 2.0 profile. The host

applicationôs job is to provide a consistent web development platform on all devices and to expose

platform APIs via JavaScript bindings. An HbbTV 2.0 terminal has an application manager that is

responsible for launching TV applications and managing their life cycle. The 2-IMMERSE application

stack features a similar component for managing web application life cycle on companion devices.

5.2.3 Launcher Application

A device may also optionally run an HbbTV companion screen launcher service to permit HbbTV 2.0

terminals to launch companion screen applications. The Launcher Application is a native application

provided by the television manufacturer. Part of the process of launching a companion screen from an

HbbTV 2.0 master terminal is proprietary and the manufacturer may elect to support a limited number

of companion platforms. This is a consideration to take into account when bootstrapping a 2-

IMMERSE experience.

5.3 Device Roles

Devices have specific roles within a 2-IMMERSE experience and this gives rise to differences in the

application stack specification for each of those devices.

Device Role Description

Mobile & Desktop Companion HbbTV 2.0 CSS running on Android and iOS phones/tablets

and desktop PC/laptops. The desktop companion can be used

for integration testing.

HbbTV Master HbbTV 2.0 Television (due to market Q2 2016) acting as a

master device.

D2.1 System Architecture

Page 24 of (135) © 2-IMMERSE Consortium 2017

Device Role Description

Emulated HbbTV Master Placeholder HbbTV 2.0 STB for the development and testing

of extended features until HbbTV 2.0 devices are readily

available. This stack represents the HbbTV 2.0 profile subset

used by 2-IMMERSE experiences and may include features

classified as optional in the HbbTV 2.0 specification.

Headless Companion A headless companion that permits devices lacking a screen to

participate in 2-IMMERSE experiences. This is useful for

automated testing where it is more practical to spin-up a

headless companion instance than a physical device with

screens. A headless companion can be run on IoT devices in

the home as part of an integrated experience. One example is

an IoT light bulb that is dimmed to warn viewers that a

programme is about to start, simulating a cinema or theatre

experience more closely. The headless companion stack can

also be run on embedded devices, servers or in continuous

integration environments.

It might be useful to consider a games console application stack too. Games consoles have powerful

graphics processing capabilities that make them suitable for hosting a local composition service or the

UX engine, including layout and timeline services.

5.3.1 Mobile & Desktop Companion Device Stacks

On mobile devices, the 2-IMMERSE Cordova application exposes DVB CSS (CII, WC, TS), DIAL,

App2App and WebRTC via JavaScript APIs. The underlying functionality is provided by Cordova

plugins written natively for iOS and Android. The BBC iOS companion library and IRT Android

companion library will be utilised for this purpose.

On desktop devices, the BBC Chrome extension for companion apps will provide media player control

and HbbTV discovery in a browser. DVB CSS (CII, WC, TS) and App2App APIs will be exposed to

JavaScript via further desktop browser extensions.

On continuous integration servers, a replacement browser driver can be used to help run automated

tests.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 25 of (135)

5.3.2 HbbTV Master Device Stack

The HbbTV master stack will utilise the BBC TAL library (or equivalent) because not all HbbTV 2.0

devices on the market will provide identical functionality. For example, there are optional parts to the

HbbTV 2.0 profile and there will be implementation differences and firmware bugs from one

manufacturer to the next.

5.3.3 Emulated HbbTV Master Device Stack

The emulated HbbTV master device may be a small form-factor PC, such as a Raspberry Pi or HDMI

stick, running a virtual machine or Docker image to emulate HbbTV 2.0 terminal features. The stack

can play MPEG-2 transport streams using the BBCôs CSSTV environment, a C++ gstreamer-based

prototype extended to include support for DVB-DASH playback. The application environment is

provided via a browser such as FireFox or Chromium leveraging a FireHbbTV-like approach to run

HbbTV master applications in the browser. An infrared remote control add-in will provide the browser

with user interactions and the BBCôs ñCSSTV in browserò prototype will be leveraged to provide a

proxy for UDP traffic and JavaScript support for media synchronisation.

5.3.4 Headless Companion Device Stack

D2.1 System Architecture

Page 26 of (135) © 2-IMMERSE Consortium 2017

DVB CSS (CII, WC, TS), DIAL & App2App APIs are exposed to node.js via extensions. One such

example is Fraunhofer "hbbtv": a module for node.js. It implements the DIAL protocol and the

extensions defined in the HbbTV 2.0 specification. The module can emulate both the DIAL client

(companion screen) and the DIAL server (HbbTV device).

Node.js modules (as opposed to native extensions) can be used to modularise applications into

components and to implement the functionality of the headless device application environment.

5.4 Web Application Architecture

Components provide much of the functionality associated with a web application, but there are

architectural requirements that must be satisfied by every web application regardless of which

components are activated. The following table highlights common architectural concerns associated

with web application development that the application architecture must address in order to support

DMApps.

Single-page application (SPA) infrastructure SPAs offer a more native-app-like experience for

the user. Single page apps are distinguished by

their ability to redraw any part of the UI without

requiring a server round-trip to retrieve HTML.

Caching is also used to minimize server round

trips.

(See http://singlepageappbook.com/goal.html)

Separation of concerns

Ensuring separation of concerns by implementing

the request processing logic and application logic

separately from the user interface. Choosing a

pattern such as MVC or MVVM to simplify

event-driven programming of user interfaces

Request Processing RESTful service calls between the browser and

the server are asynchronous. The application

architecture and user experience must be designed

to handle asynchronous requests

View management Views observe model changes and redraw the UI

automatically using an event change system that

listens to notifications from models. Views also

http://singlepageappbook.com/goal.html

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 27 of (135)

manage internal view state

Navigation A consistent navigation structure for the

application thatôs decoupled from application

logic

Session state management The web application must deal with what to store,

where to store it, and how long information will

be kept. The application must store state (both

locally and remotely, when possible) so that users

can pick up wherever they left off

Service clients Client libraries are required by the web

application in order to invoke service APIs. They

hide the client from details of the communication

protocols used to transfer data to/from the server

Connection/disconnection management ñOffline-firstò infrastructure is required because

network connections can be unreliable or slow.

This principle also improves responsiveness of

the applicationôs user experience

Component life cycle management A more specific requirement for 2Immerse web

applications is the ability to instantiate/kill

reusable component instance(s), hide/show and

enable/disable components and refresh or upgrade

components.

Logging Designing an effective logging and

instrumentation strategy is important for the

security and reliability of the application. Typical

events that are logged in a web application

include state transitions, component activation,

performance, latency, bandwidth, user

interactions and analytics.

5.5 Application Architecture Technology Choices

Certain technology choices and decisions remain outstanding pending further investigation. In

particular:

1. Choice of web browser wrapper technology (Cordova, PhoneGap, Titanium)

2. Choice of component technology (Web Components, Polymer, X-tag, pure JavaScript)

3. Scene management (Virtual DOM, React-art, Gibbon)

4. Technology choices for native HbbTV/CSS web browser and web view plugins.

5. Choice of state management framework

6. Whether a game application stack is required

D2.1 System Architecture

Page 28 of (135) © 2-IMMERSE Consortium 2017

5.6 Deployment Considerations

The various application components and layers identified in this section have different deployment

models associated with them, and as we develop each of these, and each of the trial experiences, we

will need to manage their deployment carefully. This topic is given further consideration in

Experience Deployment.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 29 of (135)

6 Service Architecture

The table below summarises the core services that comprise the 2-IMMERSE platform, and where

they could be deployed (in-home or cloud). Note that in-home here refers to the local environment of

the participating devices, so for the non-domestic trials this would represent In-school or In-pub.

{ŜǊǾƛŎŜ 5ŜǎŎǊƛǇǘƛƻƴ Lƴ-IƻƳŜ /ƭƻǳŘ {ŎŀƭŜ

Service Registry Service discovery ̧ ̧

Device Discovery
(inc. DIAL client and server)

Device discovery and
communications

 ̧ ¶

UX Engine

a) Timeline
b) Layout
c) Server-based Composition

DMApp orchestration,
adaptation and
composition

 ̧ ̧

per household
per household

per device / per
composition
permutations

Timeline Synchronisation
a) In Home
b) Between Home

Multi-screen content
synchronisation ̧ ̧

per household
per session

Content Protection/Licensing
Service

Media content
protection

 ̧

Identity Management and
Authentication

Identity management
and authentication

 ̧

Session (lobby) Service User group discovery
and management

 ̧

Call Server (SIP) Real time
communications
services

 ̧

Logging System activity
monitoring

 ̧

Analytics Platform usage and
performance insights

 ̧

Origin Server/CDN Media object and
DMApp component
distribution

 ̧

TV Platform Live and on-demand TV
content distribution

 ̧

Table 1: Core Services

In addition to these core services, additional services will be required on a trial specific basis; for

example, backend services may be required to support particular DMApp components that are part of

the trial experience, or, specific services may be required as part of the production workflow for that

trial.

D2.1 System Architecture

Page 30 of (135) © 2-IMMERSE Consortium 2017

As noted in the table above, for the UX Engine and Sync services, we can see two envisaged

deployment options; one where these services are deployed in-home (for example running on the TV

device), and alternatively with these services running in the cloud. These two models are shown in

Figure 3 and

Figure 4 below. We do not envisage supporting both models in a single trial, but will likely decide on

a particular deployment model on a trial specific basis.

Figure 3: Service / Client Deployment - in-home UX Engine Services

Figure 4: Service / Client Deployment - cloud UX Engine Services

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 31 of (135)

6.1 Service Descriptions

The sections that follow define services, provide descriptions of their functionality and interfaces, and

where appropriate identify selected technology.

6.1.1 Service Registry

Client devices and applications that need to use platform services, need to be able to establish their

availability, and where they are hosted. A typical mechanism for enabling this is a service registry,

which is deployed to a well-known location (the address of which would typically be part of the

application configuration). As the platform services are provisioned, they register with the service

registry so that they are discoverable by the applications wishing to use them.

Where we may have services deployed in-home or in the cloud, our service registry solution needs to

be able to accommodate this efficiently.

Selected Technologies

There are a number of widely available and open source implementations of service registry (Consul,

Spring Cloud, ZooKeeper et al.), some of which will be integrated into a particular cloud PaaS

(platform as a service); so it may be that selection of a PaaS will drive the use of a particular service

registry.

The particular solution we will adopt is still to be determined.

6.1.2 Device Discovery

The device discovery service enables applications, e.g. running on companion screen devices, to detect

available TV sets and STBs and services they support, e.g. sync service, in local networks.

Additionally, the service allows applications to be launched on the discovered device. The service also

provides a way to check whether an application is already running on a discovered device, via

application to application (App2App) communication.

D2.1 System Architecture

Page 32 of (135) © 2-IMMERSE Consortium 2017

Device Discovery Architecture Overview

Figure 5: Device Discovery Architecture Overview Diagram

At the time of writing it is assumed 2-IMMERSE will adapt the protocols as for Discovery, Launch

and App2App Communication as defined in the HbbTV 2.0 specification. Figure 5 provides a high-

level overview of the specified components, the information exchanged between these components

and the protocols used to transfer the information between components. The diagram uses the

following notation:

¶ Boxes with round corners denote devices (i.e. HbbTV terminal and Companion Device).

¶ Boxes with straight corners denote software components (e.g. App2App Server, DIAL Server,

Broadcaster Companion App).

¶ Arrows indicate the direction of information flow. Labels indicate what information is

exchanged. In those cases where the information flow is within the scope of the HbbTV 2.0

specification (blue arrows), text in brackets provide details on the interface or protocol used to

transfer the information.

¶ Blue colour indicates that the respective interface and protocol as well as the behaviour of the

respective component is specified in the HbbTV standard.

¶ Grey colour indicates that the specification and implementation of the respective components,

protocols or interfaces is under the authority of the TV manufacturer. It is out of scope of the

HbbTV 2.0 specification.

¶ Green colour indicates that indicates that the specification and implementation is under the

authority of the Companion Screen manufacturer.

¶ Orange colour labels those components who are under the authority of the provider of the user

experience (e.g. broadcaster).

¶ Dashed lines divide the diagram into three areas, each labelled with a roman number.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 33 of (135)

Area I. covers the elements of the Discovery Architecture that deal with companion-screen interaction

initiated by an HbbTV application. Major components are the HbbTV CS Manager on the HbbTV

terminal side and the TV Manufacturer Launcher App on the companion screen side. The HbbTV CS

Manager exposes a JavaScript API that allows the HbbTV Application to initiate the Discovery of

companion screens and subsequently request the launch of a web-based or native app on the respective

device. In case a desired native app is not available on the targeted companion device yet, the HbbTV

application can request the installation of that native app. It is important to note that the protocols for

Discovery of companion screens and the Launch of Apps on these devices is out of scope of the

HbbTV 2.0 specification, but under the authority of the TV manufacturer. To be able to Discover

usersô devices on the local network it as crucial that they have the TV Manufacturer Launcher App

installed on their companion screen device.

Area II. covers components, interfaces and protocols that allow Companion Screen Apps to discover

HbbTV terminals and to launch HbbTV apps on these devices. For this purpose HbbTV 2.0 adapts the

DIAL protocol (http://www.dial-multiscreen.org/). For discovery, DIAL references SSDP (simple

service discovery protocol) which is part of the UPnP stack. To discover an HbbTV terminal,

Companion Screens send a UDP message to multicast address 239.255.255.250. Terminals willing to

connect respond with a Notify message. The messageôs header contains the UPnP Device Description

URL, which is used to retrieve the REST endpoint of the DIAL service. To launch an HbbTV App on

the HbbTV terminal the companion app sends a HTTP POST request to this endpoint containing an

XML AIT. Via HTTP GET the Companion Application can retrieve the endpoints for app-to-app

communication (see Area III.) and companion screen synchronisation.

Area III. covers those parts that enable bi-directional exchange of messages between Companion

Screen Applications and HbbTV Applications. Messaging is done via the WebSocket protocol. For

this purpose the HbbTV terminal provides a WebSocket-Server (App2App Server) that provides

endpoints for the HbbTV application and Companion Screen Applications.

Interfaces

¶ Query device: Listens for local device discovery queries, responds to issuer with location of

device description.

¶ Get device description: Returns description of the device including supported services:

o Application launch

o Local synchronisation

o app2app communication

¶ Launch application: Launches an application on the device.

o Launch is approved by either checking a whitelist or getting user approval

o Returns status, whether launch was successful, denied by user or an error like

application could not be loaded.

¶ Open app2app connection: Open a connection to an application running on the device. Returns

a connection, which gets paired with an application if that is already running or later on when

it gets started on the device. A pairing completed message is send afterwards.

D2.1 System Architecture

Page 34 of (135) © 2-IMMERSE Consortium 2017

6.1.3 Timeline

The timeline service is responsible for managing the timeline of an experience as it is presented over a

set of participating devices (i.e. a context). It uses authored timeline metadata and optionally live

triggers to determine what media objects / DMApp Components are available for potential

presentation as the timeline of the experience progresses.

As the current set of media objects / DMApp Components changes (either through reaching an event

in the timeline metadata, or on receiving an external event trigger), the timeline service will send an

updated component list to the corresponding layout service instance.

The format for timeline metadata is still to be specified, but will need to describe the changing

availability of media objects and DMApp Components that comprise an experience over the duration

of that experience.

This service could either be deployed in the cloud (an instance for each context), or within a client

device.

The timeline service has the following interfaces

¶ Load experience (content id)

¶ Ingest timeline metadata (content id, URL)

¶ Sync

¶ Event Trigger

¶ Component list

6.1.4 Layout

The layout service is responsible for managing and optimising the presentation of a set of DMApp

Components across a set of participating devices (i.e. a context). Given a set of media objects /

DMApp Components, authored layout requirements, user preferences, and the set of participating

devices and their capabilities, the layout service will determine an optimum layout of components for

that configuration. It may be that the layout cannot accommodate presentation of all available

components concurrently.

The service instance maintains a model of the participating devices in the environment, and their

capabilities e.g. video: screen size, resolution, colour depth, audio: number of channels, interaction:

touch etc.

The layout requirements will specify for each media object/DMApp component, layout constraints

such as min/max size, audio capability, interaction support, and whether the user can over-ride these

constraints. Some of these constraints may be expressed relative to other components (priority,

position, etc.).

The grammar expressing layout requirements is still to be specified.

Layout changes can be triggered by a number of events:

¶ On receiving an updated component list from the layout service

¶ On client devices joining or leaving a context (through a manage context call).

¶ On receiving a manage component call from a client device application.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 35 of (135)

As such layout updates need to be pushed to all participating clients (for example, by a mechanism

such as WebSockets).

The data format describing layout that is pushed to clients will be logically related to the Media

Composition Protocol defined in the Sever-Based Composition service, since the layout format will

essentially describe the composition of DMApp components on a device display, however the format

of this data is still to be specified.

This service could either be deployed in the cloud (an instance for each context), or within a client

device.

The layout service has the following interfaces:

¶ Manage context (Create / Join / Leave) (capabilities)

¶ Component List (a list of the currently available components)

¶ Manage component (Hide/Show/Move/Clone) - subject to role/permissions

¶ Load experience (content id)

¶ Ingest layout requirements (content id, URL)

¶ Layout (metadata describing the current layout of components across all participating devices)

6.1.5 Server-Based Composition

The composition service provides on-the-fly compositing of media feeds on client devices or via

dedicated servers for client devices with limited bandwidth, performance or battery life. Examples of

composition include:

¶ Picture-in-picture

¶ Cropping and scaling

¶ Video tiling

¶ Animation

¶ Info-graphic rendering

¶ Camera/VT transitions (cross-fade, fade to white/black, straight cut)

¶ Visual effects

¶ Audio mixing

¶ Rendering of textual overlays e.g. subtitles

Responsive multi-screen layouts require clean feeds to be composited after broadcast in order to adapt

to the changing client ecosystem of users, apps and devices. The composition service runs downstream

from production and can be located:

¶ At the origin/head-end as a permutation cache

¶ In the cloud

¶ On a networked device local to the experience

¶ On a client device

D2.1 System Architecture

Page 36 of (135) © 2-IMMERSE Consortium 2017

The composition service is capable of generating outputs that are tailor-made for the resolution, colour

depth and bandwidth requirements of each client device. Lightweight compositing operations such as

overlaying menus will be performed on client devices such as STBs, televisions, tablets and

smartphones. These client devices still have the separate task of synchronising the playback of

composited media feeds generated by the composition service.

A more detailed description of the composition service is given in Annex C.

Interfaces

The composition service has interfaces for:

¶ Configuration (e.g. secure licensing server, CDN origin server, media feeds)

¶ Media Composition Protocol

¶ Exchanging DRM keys and authentication

¶ Remote control and monitoring

¶ Life-cycle management

The Media Composition Protocol itself is part of the composition serviceôs interface.

6.1.6 Timeline Synchronisation

A multi-device synchronised experience consists of a number of media objects that will be presented

on separate participating devices (multi-device presentation is managed by the Layout and Timeline

services, see Section 6.1.4), at times specified on the experience timeline. These media objects are

manifested in the experience by DMApp components and can be discrete such as images, infographics

or continuous such as live/on-demand audio/video streams.

The Timeline Synchronisation Service enables DMApp components on devices participating in an

experience to synchronise to a source of timing information (a timeline) representing the progress of

the experience. In an intra-location synchronisation scenario, companion devices synchronise their

content playback to a master device e.g. a TV playing a broadcast/IP-delivered stream; all devices

residing on the same network. In this particular context, the experience timeline (also called the

synchronisation timeline) is the timeline of the master deviceôs content e.g. the timeline of a TV

programme. Provided mappings from the Synchronisation timeline and the DMApp media objectsô

timelines are available, the companion devices can synchronise their DMApp components to the

master TV.

In another scenario (inter-location sync), devices at different locations synchronise their content

playback as part of a distributed synchronised experience. In this inter-location synchronisation

configuration, the synchronisation timeline can be one of the following:

1) the timeline of an elected master device,

2) a mutually-agreed timeline, achieved through timing contributions
3
 by independent peers, or

3) a timeline set by a central coordinator e.g. the experience timeline as set by the Timeline Service

3
 Although, it is possible for a mutually-agreed timeline to be achieved independently through consensus by

individual peers through rounds of state update, we refer here to a centralised service that receives timeline

progress updates from all peers and computes a reference timeline position that all peers should adhere to.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 37 of (135)

The Timeline Synchronisation Service provides Synchronisation as a Service (a SaaS) to devices,

allowing them to subscribe to synchronisation-timeline progress updates. Based on these timeline

progress updates, the devices can decide on how to adapt their playback to achieve synchrony.

In particular, a Synchronisation Server (a Timeline Synchronisation Service provider) and a

Synchronisation Client (a service consumer e.g. devices in the experience) have distinct

responsibilities in achieving the synchronised experience.

A Synchronisation Server drives the experience by collecting/distributing timeline updates and making

decisions about the reference timeline position of Synchronisation Clients (SC) after every round of

synchronisation. It essentially performs the same functions as the MSAS (Media Synchronisation

Application Server) component in an HbbTV 2.0 terminal; in fact, in intra-location synchronisation

scenarios, we may assume that the Synchronisation Server is the MSAS.

In more details, the Synchronisation Server performs the following:

¶ Collects timeline positions
4
 of DMApp components from the individual devices (the

synchronisation clients, SCs)

¶ Calculates delay differences between the media playout of the synchronisation clients, and

creating Control Timestamps (a reference timestamp) based on this. The Control Timestamp is

usually a position on the Synchronisation Timeline.

¶ Distributes Control Timestamps to SCs to suggest the timing of presentation that each SC should

align to in order to achieve synchronised timing of presentation across all SCs.

¶ Optionally receives Correlation Timestamps from the Timeline Service, and uses these to translate

the timeline of the media objects and Control Timestamps.

Synchronisation Clients, on the other hand, perform the following functions:

¶ Provide periodic timeline updates of their media playout as Actual, Earliest and Latest -

Presentation Timestamps.

o The earliest and latest presentation timestamps represent the time range of the media that

is currently loaded in the playerôs buffer

o The timestamps may be converted to positions on the synchronisation timeline

¶ Receiving control timestamps from the Timeline Synchronisation Service and adapting their

media playout to reflect this changed relationship between their content timeline and the

WallClock.

¶ Optionally receiving Correlation Timestamps from the Timeline Service, and using these to

translate the timeline of the Control timestamp to its content timeline.

¶ If performing the master role, provide content identification updates to SCs to inform them about

the content/programme it is playing.

All presentation timestamps reported by Synchronisation Clients are read with respect to a common

time clock; they actually represent a pair of time values read at the same time (time on content

timeline, time of common clock). To this end, all actors in the model share a common time reference

via a shared WallClock
5
. This is achieved by each device maintaining a local WallClock instance

synchronised to a master WallClock using clock synchronisation techniques. An overview of the

WallClock service is given in Annex B.

4
 Actual presentation timestamps, Earliest Presentation Timestamps and Latest Presentation Timestamps from

DMApp components (Synchronisation Clients) are actually sent to the Synchronisation Service

5
 The WallClock is a software clock at each device/service that is kept synchronised to the WallClock instance

on the synchronisation master terminal via time synchronisation schemes (e.g. CSS-WC, NTP, etc).

D2.1 System Architecture

Page 38 of (135) © 2-IMMERSE Consortium 2017

We illustrate the roles of the Synchronisation Service and its clients by presenting an abstract model of

their operation in Figure 6. The Timeline Service, the Timeline Synchronisation Service and its clients

are shown here as abstract components; no assumptions are made as to where they run (on same

devices or on the local network or in the cloud).

Figure 6: Abstract Timeline Sync Model ï Sync Client B synchronising to Sync Client A

All presentation timestamps reported by Synchronisation Clients are read w.r.t. to a common time

clock; they actually represent a pair of time values read at the same time (time on content timeline,

time of common clock). To this end, all actors in the model share a common time reference via a

shared WallClock. This is achieved by each device maintaining a local WallClock instance

synchronised to a master WallClock using clock synchronisation techniques. An overview of the

WallClock service is given in Annex B.

In Figure 6, two Synchronisation Clients A and B play distinct video streams StreamA and StreamB

respectively as part of an authored experience (retrieved by the Timeline Service). Sync Client B

needs to synchronise to Sync Client A; Sync Client A is the master device. Both Sync Clients A and B

share a synchronised WallClock with the Timeline Synchronisation Service. The clock

synchronisation is achieved using the WallClock service. Each Sync Client sends timeline updates to

the Timeline Synchronisation Service to indicate the current position on its timeline. The timeline

update contains the Actual Presentation Timestamp, the WallClock time when the Actual Presentation

Timestamp was read and Earliest/Latest available Presentation Timestamp of content being played.

Based on timeline updates from Sync Clients A and B, the Timeline Synchronisation Service can build

an estimate of each clientôs content timeline (dotted clock outlines in Timeline Sync Service in Figure

6). Using a correlation (TA, TB) from the Timeline Service, the Timeline Synchronisation Service can

map time values from each timeline to the other. Based on the Actual Presentation Timestamps,

Earliest Presentation Timestamps and Latest Presentation Timestamps from each client, the Timeline

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 39 of (135)

Synchronisation Service suggests a presentation timing for each client. Client B can then adjust its

playback to this new presentation timing.

If the timestamps from B indicate that it may be hard to catch up with A, then the Timeline

Synchronisation Service may instruct client A to decrease its presentation speed by sending it a control

timestamp as well. The Timeline Service itself functions as a Synchronisation Client if it assumes the

role of the synchronisation master (this is outlined in more detail in Annex B).

The Timeline Synchronisation Service provides the following interfaces:

¶ Enable Synchronisation - establish a timeline synchronisation service instance per experience and

make Timeline Synchronisation interface endpoint known to clients)

¶ Timeline Synchronisation interface - for master timeline negotiation, timeline update collection/re-

distribution, computed reference time position distribution

¶ Content Identification & Other Information (for content identifier and service-endpoints

dissemination to clients)

¶ Rebase Experience Timeline Correlationï (update experience timeline/ WallClock correlations if

post-production latencies are introduced)

Selected Technologies

There are a number of alternative technologies and approaches to achieving media synchronisation,

each delivering different synchronisation accuracy and convergence delays. The following solutions

are favoured candidates to achieving WallClock Synchronisation and Timeline Synchronisation in

both intra-location and inter-location synchronisation configurations. They have been selected for their

synchronisation accuracy and the suitability for both local and distributed deployment configurations.

A local deployment configuration will allow independent instantiations of our platform (e.g. for

demos) and will leverage local-network performance to deliver more accurate synchronisation. Other

reasons are their availability as open standards (obviates tie-ups with proprietary solutions) and the

existence of relatively mature implementations.

Timeline Synchronisation DVB-CSS (HbbTV 2.0 Stack) for intra-location Sync,

cloud-based DVB-CSS variant for inter-location sync

WallClock Synchronisation DVB-CSS WallClock Synchronisation Protocol, W3C Web

Timing API

Content Identification Service DVB-CSS CII protocol

A more detailed explanation of how to achieve both inter- and intra-location synchronisation based on

the technology selections is provided in Media Synchronisation (Annex B). In particular, Annex B

describes how the actors and interactions in our model are mapped into existing DVB-CSS component

roles and protocols.

Available implementations:

¶ Synchronisation Client on mobile devices: BBCôs iOS Sync Library, IRTôs Android Sync

Library

¶ Synchronisation Client on desktop browsers: BBCôs JS Sync Library

D2.1 System Architecture

Page 40 of (135) © 2-IMMERSE Consortium 2017

¶ Timeline Synchronisation Server/Synchronisation Client on TV: BBCôs DVB-CSS TV

Emulator

6.1.7 Content Protection and Licensing

Media content protection is where access (playback and/or download) to media content is limited to

users/accounts which are currently suitably authorised, in such a way that access cannot be easily

propagated to other users, or to the current user once any authorisation has expired or been revoked.

The requirement that access cannot be propagated and is limited to authorised usage imposes

constraints on the authorisation model and additional technical requirements. This is because the end-

user of the media (the person(s) viewing/consuming it) is also an adversary who could otherwise

consume the media data and then replay it to non-authorised users, or consume it by a means that is

not authorised. Policy and technology to implement these restrictions is referred to as Digital Rights

Management (DRM).

Technical mechanisms to do this include:

¶ Contacting a remote license or key server when media is about to be accessed, to check

whether and how content can be consumed, and/or what keys are required to decrypt it.

¶ Transport encryption: encryption/protection of data being transmitted against passive or active

snooping.

¶ Encryption at rest: encryption of data (temporarily) stored in user controlled/owned devices.

¶ Obfuscation of keys, credentials and/or decryption mechanisms in software.

¶ Obfuscation of keys, credentials and/or decryption mechanisms in hardware.

¶ Obfuscation of and/or technical barriers around hardware paths which carry unencrypted

media or key data.

Which mechanisms are used and how is a trade-off between the level of protection required, hardware

availability/requirements, client platform support, technical cost/difficulty, and media distribution

platform. Protection mechanisms implemented in software are simpler to implement and more

portable however offer less protection than hardware-based mechanisms. This is because the level of

competence, cost and difficulty required to read or modify content protection software is orders of

magnitude less than that required to reverse-engineer or modify content protection hardware.

Current commercial hardware platforms for consuming content, including a significant subset of TVs,

tablets and smartphones, and a smaller subset of PC/laptop type devices, include hardware protection

mechanisms. However, development platforms such as might be used to emulate a HbbTV 2.0 TV, are

unlikely to include any hardware support for DRM/protected content playback. Therefore, any media

content to be used in a trial with development devices which needs to be protected, will only be able to

be protected using software-based mechanisms. The mechanism by which content is protected would

need to be agreed with the relevant rights holders/owners and may limit the choice of what content to

use.

Possible content protection types which could be used in a trial using development devices include:

1. No encryption at all, only authorisation.

This is probably insufficient, as it is vulnerable to trivial snooping.

This does not require a content protection service.

2. Transport encryption (TLS) with authorisation.

This may be sufficient as it prevents trivial recovery of the media by snooping.

However this requires that the media distribution platform (typically a CDN) implement

validation of authorisation credentials and TLS for media download. This is unlikely to scale

well or be compatible with current media CDN platforms.

This requires that the media distribution platform uses the identity management and

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 41 of (135)

authentication service for access control, but does not otherwise require a content protection

specific service.

3. Encryption of media data, with keys stored within an unencrypted part of the media data.

This imposes a slight inconvenience on an attacker, who would be able to decrypt all items of

protected content even if not originally authorised.

A standardised implementation of this is using ClearKey with MPEG-DASH CENC.

This does not require a content protection service.

4. Encryption of media data, with pre-shared key(s).

An attacker who extracted the pre-shared key(s) from the executable would be able to decrypt

past and future items of protected content, even if not currently authorised.

This does not require a content protection service.

5. Encryption of media data, with key(s) retrieved separately using transport encryption and

authorisation.

This is the mechanism used for protected BT Sport HLS content on tablets/smartphones, see

section 9.5.1.6.

An attacker would need to be authorised, to extract the key(s) used to decrypt the content, and

these key(s) would not allow decryption of other items of content.

In the case of BT Sport HLS, a key server is contacted for each individual segment (10s chunk

of media) during playback. This imposes scalability requirements on any key server

implementation used in a trial. These scalability requirements could be reduced by sharing

keys between multiple media segments, or by using the same key for the entirety of the item

of content.

This requires a content protection service, which acts as a key server and uses the identity

management and authentication service to validate user credentials.

Of the possible content types listed above, only type 5 requires the addition of a specific service for

content protection. This service would act as a key server.

Selected Technologies

MPEG-DASH CENC is a standardised mechanism to encrypt fragmented MP4 media files as used in

MPEG-DASH using a common key(s), and optionally include proprietary metadata for one or more

DRM schemes to be able to independently decrypt the content. This could be used as the media format

for options 3 to 5 above, optionally including a proprietary marker to label any choice of scheme in

options 4 and 5.

In a production system where protected content does not need to be consumed on development devices

without hardware support for protected content, MPEG-DASH CENC could be used with one or

hardware-based commercial DRM systems. Commonly used examples include: PlayReady, Marlin,

Widevine, FairPlay and Adobe.

6.1.8 Identity Management and Authentication

Components of the system including the lobby, social/communications functionality and access

control for media content may require that users (individual persons or groups of persons) can be

identified as being associated with an account. Users could be invited to create an account and enter

their identity details and credentials to authorise access to that account, at first use, or in the case of a

trial, may be allocated an account in advance.

D2.1 System Architecture

Page 42 of (135) © 2-IMMERSE Consortium 2017

Authentication is used within the architecture for:

¶ An entity to prove its identity to other entities by proving that it has the required authorisation

credentials.

¶ An entity to be authorised or unauthorised to access user data, media content, services, or

perform other actions.

¶ An entity to assign or revoke authorisation credentials to/from an entity.

The authentication architecture contains a number of entity types:

¶ Users (individual persons or groups of persons)

¶ Accounts

¶ Client devices

¶ Client applications

¶ 2-IMMERSE platforms

¶ 3
rd
 party platforms

Possible authentication scenarios include:

1. A user signs into an account using a client application. Authorisation for that account is stored

on the client device for future use by that client application.

2. A user returns to a client application that they have previously authorised to access an account,

the client application signs into the account without requiring any credentials to be input.

3. A user revokes authorisation credentials previously assigned to a client device and/or client

application.

4. A user creates, deletes, accesses or modifies an account. The authentication model may require

that some operations such as these are privileged and require inputting credentials again or

inputting separate credentials, which are not then stored on the client device.

5. A user creates, deletes or modifies a subsidiary account associated with a primary account. The

subsidiary account may share some subset of the capabilities or access rights of the primary

account. This may be useful for child accounts with some form of parental access limitations,

for example.

6. Account identity and/or credentials for a 3
rd
 party platform are associated with an account on a

2-IMMERSE platform, or vice versa.

7. A 3
rd
 party platform accesses or modifies an account or associated data on a 2-IMMERSE

platform, or vice versa.

8. A user uses a client application/device to play an item of protected media content.

Authorisation may involve authorisation/communication with platforms and/or may require

that the user, account, client application and/or client device is identified/authorised.

9. A user uses a client application to connect to or control another client device. This may require

that the user input suitable credentials, if not already stored on the client device, and/or that the

user performs a confirmation on the device being connected to or controlled. This may vary

depending on the locations of the devices, for example less authentication may be required if

both devices are present on the same LAN.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 43 of (135)

10. A user uses a client device to create, delete or join a limited-access shared group which

requires credentials to access. A possible example of this is a protected chat where only

persons who have been given credentials out of band are permitted to join.

11. A client application or client device securely connects to a platform (2-IMMERSE or

otherwise) and each verifies and/or authenticates that the other end of the connection is the

(type of) entity which is expected.

12. A client application or client device downloads a software update. Platforms such as iOS and

Android already have a comprehensive framework for this, but on other platforms if secured

updates are required it may be necessary to use a secured connection (typically TLS) and/or to

use signed update packages.

OAuth is an authentication framework which could be used for authenticating client

devices/applications. OAuth is a standardised general framework for authentication using tokens. It

includes support for varying access types on a per-token basis and authentication flows such as

entering the username and password on a different application or device than the application to be

authorised. (See Section 9.5, Authentication and Security).

Authentication that the other end of a network connection is the (type of) entity which is expected can

be done using certificates, typically using TLS.

3
rd
 party platforms which client applications/devices and/or 2-IMM ERSE platforms may require

authentication to interact with might include:

¶ BT (BT Sport), for access to sports media content/data.

¶ Dorna, if access to MotoGP data or media content is not routed via BT.

¶ Pub-specific platforms, either within the pub premises or a pub-specific remote service.

¶ Theatre-specific platforms.

¶ Education-specific platforms.

¶ Social media platforms, if client applications or a 2-IMMERSE platform are to interact on social

media on a userôs behalf.

¶ VOIP/real-time comms platforms.

BT authentication appears to be SAML (Security Association Markup Language) based, however this

does not require any other parts of the system to also use this authentication data format.

Authentication and management of user credentials, and generation of authentication tokens, for all

parts of the 2-IMMERSE platform is encapsulated within a single identity management and

authentication service. This allows Single Sign On (SSO) within the 2-IMMERSE platform. Users use

the same account and credentials to access all parts of the platform (subject to user/account

entitlements).

The particular identity and authentication functionality required is likely to be specific to the user-

stories of each prototype service trial, however these different scenarios will be implemented by

means of a single authentication service which provides identity and credential management

functionality common to all use cases.

D2.1 System Architecture

Page 44 of (135) © 2-IMMERSE Consortium 2017

6.1.9 Session (Lobby) and Call Services

The session (lobby) service allows peers to join a named group to discover and communicate with

each other. It acts as an introductory service based on peopleôs names as opposed to IP addresses.

Peers can join and leave the lobby at any time and everyone in the lobby is notified when this happens.

Itôs possible to join more than one lobby concurrently. The lobby doesnôt exist in any form prior to the

first peer joining and ceases to exist after the last peer has left. It is possible to request a list of the

peers that are in the lobby. This is useful for late joiners who have missed all prior join notifications.

6.1.9.1 Broadcasting

The lobby service can broadcast user-defined messages on behalf of a peer to all other peers in the

lobby. This is useful for signalling changes in the state of a shared experience and to synchronise

actions amongst the peers without having to establish separate peer-to-peer connections. An example

would be an application-defined message instructing each peer to begin playing a media stream.

6.1.9.2 Meta-data

Meta-data can be passed to the lobby when a peer joins, but the lobby service does not impose a

schema on it. For example, the data can describe a personôs name or the data can be application

defined. This meta-data is automatically distributed to all peers via join notifications.

6.1.9.3 Signalling

The lobby service implements signalling for WebRTC applications via WebSockets and XHR.

Signalling allows initiation of peer-to-peer sessions by exchanging control messages that initialise or

close communication and report errors. Peers can use the lobbyôs signalling mechanism to exchange

ICE candidates obtained from STUN/TURN servers. ICE candidates are the public IP addresses and

ports that peers should use to communicate with each other and are the result of establishing NAT

punch-through or relay. Signalling is also used to negotiate codecs, video resolutions and

communication protocols via Session Description Protocol (SDP). Transport type can also be

negotiated as reliable (TCP-like) or unreliable (UDP-like).

Once signalling is complete, peers can chat directly with one another using real-time video, audio and

text messages, courtesy of WebRTC. Peers can also exchange arbitrary binary payloads using

application-defined protocols.

6.1.9.4 Hosting

The lobby service is cloud hosted and uses secure web sockets and HTTPS XHR to communicate with

peers. It leverages WebRTCôs security for peer-to-peer communications.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 45 of (135)

6.1.9.5 Lobby Architecture Overview

Figure 7: Lobby Architecture

6.1.9.6 Selected Technologies

¶ Telepresence: WebRTC

¶ Adapter.js: A WebRTC adapter shim (https://github.com/webrtc/adapter)

¶ Peer.js: Call service (http://peerjs.com/)

¶ PeerServer: A server for PeerJS (https://github.com/peers/peerjs-server)

6.1.10 Logging

The logging service provides a consistent mechanism for monitoring all aspects of system activity

which developers and producers consider to be important (see discussion in Section 7.7, Testing,

Monitoring and Analytics).

Activit ies to be logged may include:

¶ User interactions with all devices in the client environment for the duration of a production

session.

¶ Interactions between components in the production environment (such as video servers,

metadata and graphics feeds).

¶ Interactions between devices in the client environment to discover and launch apps, and to

synchronise media objects between devices.

https://github.com/webrtc/adapter
http://peerjs.com/
https://github.com/peers/peerjs-server

D2.1 System Architecture

Page 46 of (135) © 2-IMMERSE Consortium 2017

¶ The request and delivery of media objects and streams.

¶ The transfer of layout information from the Layout Service to either a cloud compositor or

devices in the client environment.

¶ The authentication of users and client devices whenever this is required by application logic.

¶ Communication sessions set up between client devices in different locations, mediated by the

Lobby.

For the purposes of 2-IMMERSE trials, the scope of a consistent set of logs will be restricted to a

production session, which refers to the up-time of the prototype 2-IMMERSE platform during an

individual trial event, such as a theatre play, MotoGP race or football match. The logging service must

be started before all other services and will be the last service to be shut down. It may also be started

independently of a production session to enable developers and producers to read and analyse log data.

The logging service will operate on the following principles:

¶ Logs are created by the majority of other system components, which are each responsible for

transmitting their logs to the logging service.

¶ The logging service acts as a log aggregator to ingest, store and index log data. It will provide

ingested log data to the analytics service, which can be used to present and analyse its data.

¶ All components which create logs should use a Wall Clock service which is synchronised with

the Sync Service as their reference for log timestamps to ensure that ordering is correctly

preserved by the log service.

¶ If logs are aggregated from external óblack boxô components, they should be annotated
appropriately if synchronised clocks cannot be guaranteed.

¶ Log transactions should not noticeably impact the performance of the originating component

and should be executed as soon as possible after event being logged.

¶ For simplicity and reliability, logs will be made available to the server during every production

session using one of two methods:

o Instantaneous transmission: Critical log data is transmitted to the log server at the

time the logged event takes place. This should be restricted to essential data and

meeting real-time system monitoring requirements - such as reporting errors,

understanding system load and key success criteria during the experience (e.g. have

all the users logged in?).

o Store and forward: Non-critical log data will be stored locally by the component or

service creating the log. This data must then be uploaded to the log server in a one-

time transaction before the component or service terminates. Non-volatile local

storage will be used where available to reduce the risk of the stored log data being lost

if the component or service running on it crashes.

¶ Given the relatively short length of a production session, these two options provide a pragmatic

approach which should remove the complexity of joining incremental batches of log events and

also the risk of losing critical log data in the event of an individual component or service failure.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 47 of (135)

6.1.10.1 Selected Technologies

There are a wide variety of log analysis tools available, but the following three options seem to be the

most appropriate candidates for the 2-IMMERSE logging service:

¶ Logstash and Elasticsearch, both components from the Elastic Stack

(https://www.elastic.co/products). Logstash provides a flexible, open source data collection

pipeline, while Elasticsearch provides storage, plus indexing and analytics functions.

¶ Splunk Light (http://www.splunk.com/en_us/products/splunk-light.html) provides log search

and analysis for small IT environments and is available free of charge if it indexes less than

20GB of logs per day.

¶ A DIY solution: Given the relatively small volumes of data involved per production session, it

may just be sufficient to write a simple log server which aggregates atomic events delivered via

HTTP transactions into a database. Log files stored by other components or services could then

be manually combined after the event.

6.1.11 Analytics

The Analytics service is likely to be of greatest value as an offline service ï i.e. to be used for post-hoc

analysis of data collected and aggregated by the logging service during a production session. It is

feasible that developers or producers might make limited use of analytics during an event, but in a

field trial environment this is likely to consist of simple queries to confirm the correct operation of the

system, perhaps presented as a live graphical ódashboardô.

The following table lists a potential set of usage scenarios for the analytics service:

Usage Scenario Live Offli ne

Measuring system performance by comparing aggregated logs and

calculating latencies and throughputs.
Yes Yes

Extracting basic statistics about the audience for a particular

production session, including details of their home environment and

the group dynamics of those participating in the experience.

Yes Yes

Pattern mining user behaviour sequences, perhaps comparing against

stereotypes estimated by authors. This could indicate:

how behaviour differed from what was expected

which parts of the experience were most and least popular

when users were confused or frustrated with an experience

 Yes

Examining the impact of system errors and degraded performance on

user behaviour.
 Yes

Evaluating whether companion devices increased user engagement

with the experience, and which combinations were most effective at

doing so.

 Yes

Table 2 -Usage scenarios for the analytics service

https://www.elastic.co/products
http://www.splunk.com/en_us/products/splunk-light.html

D2.1 System Architecture

Page 48 of (135) © 2-IMMERSE Consortium 2017

6.1.11.1 Selected Technologies

As described in Section 7.7: Testing, Monitoring and Analytics, there is a massive choice of tools

available for data analytics. While the volumes of data generated by a production session will not be

very large by modern standards, they can still take advantage of tools designed for analytics at scale.

The following are likely candidates, and in principle any or all of these could be used for offline

analytics given that there are no dependencies with the rest of the system beyond access to data stored

by the log server.

1. Kibana from t he Elastic Stack (https://www.elastic.co/products) is an open source analytics

and visualisation platform designed to connect directly to Elasticsearch.

2. R Studio and Shiny (https://www.rstudio.com). R Studio is a popular open source

development environment for the powerful statistical language, R. Shiny is a web framework

for building interactive visualisations (such as dashboards) using R.

3. Tableau (http://www.tableau.com/products/desktop) is a paid-for visual analytics tool which

supports complex visual analytics on local or remote data sources.

4. RapidMiner (https://rapidminer.com/) is an open source and paid-for predictive analytics

platform which offers a graphical plug-and-play approach to the implementation of machine

learning techniques.

6.1.12 Origin Server / CDN

In our architecture we assume the availability of a CDN to efficiently serve media objects and DMApp

Components to client devices. The CDN shall contain an origin server operating as the source of truth

for all content and shall be capable of serving all the content available on the CDN. As the

geographical spread of consuming clients increases in distance from the origin server, the CDN should

utilise edge servers to minimise the physical distance required to deliver content to clients. Standard

CDNs use the DNS resolverôs IP address to perform a geographic lookup to select a delivery server

(origin or edge) closest to the client. An edge server selection policy based upon closest geography

positioning offers the best delivery performance.

It is assumed that delivery performance takes priority within the server selection algorithm for 2-

IMMERSE, combining both geographical distance and load balancing factors to maximise

performance. This is preferred to other policies which may factor the value of specific content and

distribute availability across the CDN based upon relative hosting costs.

The complexity of the CDN can evolve with the size of the 2-IMMERSE client population size and

geographic spread. In the early PoC phases, it may well be sufficient to minimise costs and host a

CDN containing just the origin server. Although, it is assumed that contributing partners to the 2-

IMMERSE project already operate CDNs to deliver content to connected devices (i.e. OTT video

delivery to companion devices). We should be considering leveraging these based upon availability

and costs.

Interfaces

The CDN should be addressed through a domain name used in specific content URLs resolvable

through the CDN web-service APIs accessed by the client. The selection of the delivery server (origin

or edge) within the CDN is performed as part of the DNS resolution process.

The origin server will host an API to manage content hosted as the source of truth within the CDN.

https://www.elastic.co/products
https://www.rstudio.com/
http://www.tableau.com/products/desktop
https://rapidminer.com/

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 49 of (135)

The edge server instances will host an API for configuration of the content caching policies adopted as

part of its role within the CDN.

It is assumed that these management APIs will be hosted by a web service.

6.1.13 TV Platform

In our architecture we assume the availability of a TV platform that can support linear and on-demand

AV distribution. Linear distribution could include DVB Terrestrial / Satellite, IP Multicast, or OTT

live streams (e.g. HLS or DASH). For on-demand distribution we assume OTT (e.g. HLS or DASH).

The TV platform is expected to provide the following services as required to support AV distribution

of the primary content for consumption on client devices (STB, Smart TV, Companion Devices):

¶ Control plane (catalogue, identity, offer, security, recommendations, messaging, etc.)

¶ Data plane (origination, acquisition, distribution)

Data Plane

The acquisition, origination and distribution of the AV assets played out as part of the TV platformôs

linear or VOD services. Origin AV assets are ingested, stored, encoded, transcoded, packaged and

distributed within a media preparation process required by TV platformôs delivery networks (i.e.

Satellite, Terrestrial, Cable, OTT IP ABR).

The consuming clients have been integrated to interface with the AV delivery network, this integration

ranges from middleware stacks operating in dedicated STBs through to applications running on

agnostic connected devices such as SmartTVs and companion devices.

Control Plane

The components providing the user experience services required to consume the TV platformôs linear

or VOD services. The following shortlists relevant components for a typical Pay-TV platform:

¶ User Management: Operated within Pay-TV platforms, used to manage subscription accounts,

profiles and identity. 2-IMMERSE elements (such as the Identity Management and

Authentication Service) may need to interface with an existing user management service to

facilitate unified identity and single sign-in experience for users.

¶ Security: Operated within Pay-TV platforms, used to control access to channels/content based

upon subscription entitlements. Interfacing with the TV platform security service maybe

required when providing 2-IMMERSE experiences which use protected media.

¶ Catalogue Management: Ingesting, storing, indexing and distributing content metadata, used in

client UIs to present EPGs. Interfacing with the Catalogue management service maybe required

to map 2-IMMERSE media objects with the TV platform catalogue entities.

Interfaces to the TV Platform control plane are expected to be proprietary and require a custom

integration layer.

Selected Technologies

For the purposes of our trial platforms, the project is likely to adopt a simpler TV platform from both a

data and control plane perspective, since we will be developing our own emulated HbbTV device /

stack. For the data plane we are likely to restrict linear distribution to OTT live or on-demand streams

in order to simplify the emulated HbbTV device / stack.

D2.1 System Architecture

Page 50 of (135) © 2-IMMERSE Consortium 2017

7 Production Architecture

A detailed, generalised production architecture is difficult to create, since we are looking to extend

existing production workflows and these existing workflows for the different trial scenarios are

already quite different. There is however commonality in what needs to be created through the

production process and delivered to the platform.

In this section we will describe in general terms the content and data flows from the production

process to the platform. We will then describe the existing production workflows for each of the

scenarios, and note what additional content and data flows will be needed to support the scenario as

defined in D4.1 (noting that the various scenarios are described with varying levels of detail, reflecting

the scenario maturity). Finally we cover the topic of Testing, Monitoring and Analytics.

There are likely to be a number of óproduction servicesô required to deliver the additional content and

data flows e.g. moderation / conformance, info-graphics generation, push notifications (triggers) etc.,

however at this stage it is difficult to define these and we will define them on trial-specific basis.

7.1 Production Content and Data Flows

7.1.1 Timeline Description

The timeline description describes the changing availability of media objects and DMApp

Components that comprise an experience over the duration of that experience.

The format / syntax of this data is to be specified, but will likely be defined as JSON or XML.

7.1.2 Layout Requirements

The layout requirements specify a priority for each media object/DMApp component, and, for each

media object/DMApp component layout constraints such as:

¶ min/max size

¶ audio capability

¶ interaction support

¶ and, whether the user can over-ride these constraints.

Some of these constraints may be expressed relative to other components (priority, position etc.).

The format / syntax of this data is to be specified, but will likely be defined as JSON or XML.

7.1.3 Media Objects

The set of media streams or assets that comprise an experience. These includes typical programme

elements (main audio/video, audio description, subtitles etc.), but would also include the constituent

elements that are composited / and mixed to create these programme elements, such as clean feeds,

audio commentary, auxiliary camera feeds, metadata feeds, images, graphics, A/V clips (e.g.

highlights / replays).

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 51 of (135)

7.1.4 DMApp Components

As described in section 5.2.1: Web Applications and Reusable Components, DMApp components are

reusable components written using HTML5, CSS3 and JavaScript.

7.1.5 Native Companion Applications

As described in section 5.2.2: Host Application, these are native host applications for the common 2-

IMMERSE run time web application and DMApp components, which will likely be developed using a

wrapper technology such as Cordova or Titanium.

7.1.6 HbbTV Applications

As described in section 5.2.1: Web Applications and Reusable Components, HbbTV Applications are

web applications written using HTML5, CSS3 and JavaScript.

7.1.7 Live Trigger Events

For live productions, live trigger events will be created to trigger presentation changes in the

immersive experience (these triggers could change the set of DMApp components being presented, or

could trigger a change of presentation within a DMApp component). These trigger events are received

by the Timeline Service.

7.2 Prototype Service 1 ï Watching Theatre at home

7.2.1 Existing Workflow

Six Sony 4K HDC 4300 cameras, which are located in the auditorium and are controlled by human

operators, provide continuous live image feeds along rigged cables to a nearby OB4K unit operating

with a XAVC Intra codec. Two of the cameras are on fixed pedestals and three others are mounted on

dollies which run on short tracks in areas within the auditorium from which seats have been removed.

The framings, lens adjustments and camera moves for each of these cameras have been scripted in

advance by the screen director and rehearsed during two earlier camera rehearsals. Both the live mix

of these rehearsals and the outputs of each camera have been recorded, composited into a single feed

with a main image of the mix and the individual feeds arrayed around this in a ñLò configuration. This

composite is studied by the screen director and the camera and sound teams to refine the camera script

before the live performance.

During the performance the operators receive additional instructions and communicate with the screen

director and script supervisor who, with the vision mixer, are monitoring the live feeds and selecting

moment by moment, and broadly in accordance with the camera script (but with occasional

improvised variations), the shots in the master ómixed' feed. As the image feeds are coming into the

scanner they are being monitored by engineers and balanced for to ensure consistency of colour and

intensity from shot to shot.

Two additional Sony 4K HDC 4300 cameras are dedicated to providing shots of the host and

interviewees before the performance begins and during the interval.

In parallel with the image feeds is the live mixing of a 5.1 surround audio track created, again in

accordance with a previously created script that has been tested during two rehearsals, from up to 156

separate feeds from inside the theatre. These feeds come from individual radio mics mounted in the

wigs or costumes of each of the actors, from mics placed in the band room where the music is played

live by up to 8 musicians, from mics hung in the auditorium to pick up audience response, and also

D2.1 System Architecture

Page 52 of (135) © 2-IMMERSE Consortium 2017

from pre-recorded special effects and music. The synchronous 5.1 audio mix is fed to the scanner

where it is married with the image track before output to the satellite uplink.

Live English subtitles are created, using pre-set files, are also inserted into the signal on a separate

channel so that the cinemas taking it via a downlink can opt to include these in the projection or not.

Only a small number of European cinemas take advantage of this option.

Three Sony PWS 4500 media streamers, with a total of 8TB internal storage, are used both to play out

short pre-recorded elements that are used as context and marketing before the performance and during

the interval. These machines also record the master feed and audio, as well as continuous feeds from

three of the performances cameras. These óisolatedô feeds are used to provide alternative shots and

editing coverage during the small adjustments made between the live presentation and the release of a

final recording for DCP mastering, DVD production and potential broadcast and other exploitation.

Throughout this process there is a system of private audio channels in operation connecting, variously,

the team in the scanner, the sound crew (including two radio mic operators in the auditorium), the

camera operators and the stage management team who are running the show, including giving audio

cues for lighting, sound and automation changes.

The married image mix and 5.1 audio is delayed by 65 seconds in an EVS machine (this is so that the

production can be classified as a ñfilmò for purposes of UK tax relief funding; there is no intention of

intervening in the feed in any way) and then output to a satellite uplink truck which transmits the

signal to three channels across two satellites: Intelsat 10-02 (used for download by most UK cinemas,

Picturehouse and Cineworld cinemas, and used by most of the European cinemas who take a live

feed), and Intelsat 905 (used by most of the multiplex theatres in the UK as well as some UK

independents). The cinemas take the feeds by their local downlinks, using dishes mounted on their

roofs, and use their in-theatre digital projection systems to present the feed on their screens.

After the live performance, on subsequent days, some ótidying-upô work is done to both image and

sound, including some additional grading, before a DCP (digital cinema package) master file is

created, from which DCPs are made for courier distribution to cinemas abroad where the production

will be shown ñas liveò on dates up to two months later. This DCP master file is also distributed via an

Aspera link so that duplication facilities in some countries can create DCPs locally.

This ñtidied-upò file is also the one used for DVD and Blu-ray mastering and for further down-stream

exploitation, as well as for archiving by the theatre company. Some of the rehearsal material and

certain of the ñisoò feeds are also archived.

7.2.2 Additional Content and Data Flows

The additional content and data flows identified through the user stories in Annex A are as follows:

¶ Relevant text, image, audio and video resources about the play, the production, the cast and

crew (Introductory, Informed or Expert levels)

¶ Synchronised information and commentary in the form of image and text (Introductory,

Informed or Expert levels)

¶ Static wide shot of the stage

¶ Live and interactive 360-degree video and audio from the foyer (TBD)

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 53 of (135)

7.3 Prototype Service 2 ï Theatre in School

7.3.1 Existing Workflow

This will be the same production workflow that has been developed to support Prototype Service 1 ï

Watching Theatre at Home.

7.3.2 Additional Content and Data Flows

This is still to be determined but is likely to be additional elements to support teaching and the

educational context of this Prototype Service. It may also require the presentation of the content in an

episodic fashion; since it is unlikely the entire play will be consumed in a single session due to school

timetabling (amongst other constraints).

7.4 Prototype Service 3 ï MotoGP at home

7.4.1 Existing Workflow

The trial will use the available video and data feeds provided through the existing MotoGP rights deal

agreed with BT Sport. These rights include access to 9 live video feeds; clips and highlights of

qualifying session and races; real time data (timing, track positions and circuit maps and rider

standings); and editorial content, such as news stories, picture galleries and social interaction with the

riders, teams BT Sport presentation and commentary teams.

Content type Content description

Video Live video streams of each MotoGP, Moto2 and Moto3 qualifying session

and race, including:

¶ Live BT Sport programming

¶ Feed 1: On Board Camera 1

¶ Feed 2: On Board Camera 2

¶ Feed 3: On Board Camera 3

¶ Feed 4: On Board Camera 4

¶ Feed 5: Helicopter Feed (race day only)

¶ Feed 6: Live Timing

¶ Feed 7: Live Tracking

¶ Feed 8: Highlights/Clips

On demand replays

(geo-blocked to UK)

Provision of full replays of MotoGP, Moto2 and Moto3 qualifying sessions

and races.

Clips

(geo-blocked to the UK)

Access to clips and highlights of each MotoGP, Moto2 and Moto3 qualifying

session and races.

Real-time Data ¶ Timing

¶ Tracking visualized on circuit maps.

¶ Rider standings.

Editorial ¶ News stories.

¶ Pictures galleries.

¶ Social interaction with riders, teams, BT Sport presentation and

commentary team.

