

© 2-IMMERSE Consortium 2017 Page 1 of (135)

Grant Agreement number: 687655 — 2-IMMERSE — H2020-ICT-2015

Directorate General for Communications Networks, Content and Technology
Innovation Action

ICT-687655

D2.1 System Architecture

Due date of deliverable: 31 March 2016

Actual submission date: 10 May 2016

Resubmitted with minor changes: 14 July 2017

Start date of project: 1 December 2015 Duration: 36 months

Lead contractor for this deliverable: Cisco

Version: 14 July 2017

Confidentiality status: Public

D2.1 System Architecture

Page 2 of (135) © 2-IMMERSE Consortium 2017

Abstract

This document describes the system architecture being developed by the 2-IMMERSE project. This

architecture is designed to enable the four multi-screen service prototypes that will be delivered

through the project. The System Architecture is layered as a set of platform services, a client

application architecture and production architecture. The system architecture is a work in progress; it

will evolve both as we refine it and specify it in more detail, and as we deliver each of the multi-screen

service prototypes through the project.

Target audience

This is a public deliverable and could be read by anyone with an interest in the system architecture

being developed by the 2-IMMERSE project. As this is inherently technical in nature, we assume the

audience is technically literate with a good grasp of television and Internet technologies in particular.

We have included a Technology Overview section that summarises a range of technologies that are

potentially applicable within the project. This document will be read by the Project Consortium as it

defines the system architecture that will be adopted and evolved throughout the project.

Disclaimer

This document contains material, which is the copyright of certain 2-IMMERSE consortium parties,

and may not be reproduced or copied without permission. All 2-IMMERSE consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the 2-IMMERSE consortium as a whole, nor a certain party of the 2-IMMERSE consortium

warrant that the information contained in this document is capable of use, or that use of the

information is free from risk, and accept no liability for loss or damage suffered by any person using

this information.

This document does not represent the opinion of the European Community, and the European

Community is not responsible for any use that might be made of its content.

Impressum

Full project title: 2-IMMERSE

Title of the workpackage: WP2 Distributed Media Application Platform

Document title: D2.1 System Architecture

Editor: James Walker, Cisco

Workpackage Leader: James Walker, Cisco

Project Co-ordinator: Helene Waters, BBC

Project Leader: Phil Stenton, BBC

This project is co-funded by the European Union through the ICT programme under Horizon2020.

Copyright notice

© 2017 Participants in project 2-IMMERSE

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 3 of (135)

Executive Summary

This document describes the 2-IMMERSE system architecture. The system architecture is a work in

progress. We expect that the architecture will evolve both as we refine it and specify it in more detail

(for example through detailed component interface specifications) and as we address the expanding

scope of the four multi-screen service prototypes through the project. Within the project, we will keep

this document updated to reflect this development.

As work on the architecture started before the D4.1 Prototype Service Descriptions deliverable was

available, we have adopted a set of assumed Core Technical Requirements to enable us to proceed;

these are presented in this document. Subsequently, with the release of D4.1 we have been able to

address requirements emerging from the service prototype descriptions. We have included the set of

prioritised user stories from the initial service prototype (Watching Theatre at Home) in this

document.

We have taken a ‘layered’ approach to documenting our system architecture in order to maximise

clarity and maintain an appropriate ‘separation of concerns’:

 The platform is defined as a set of services which support applications running on client

devices. In defining these services we have described the service functionality, key interfaces

and technology choices where they have been made.

 The client application architecture defines a common HTML and JavaScript environment for

the Distributed Media Application components, and the underlying application that manages

their lifecycle and presentation. It also details how this is supported on the various devices that

participate in the system.

 The production architecture is defined at a high level; however, we note that a detailed,

generalised production architecture is difficult to create, and specific production architecture

will be determined for each service prototype.

The document also includes a comprehensive Technology Overview section that summarises a range

of technologies that are potentially applicable to the 2-IMMERSE project.

D2.1 System Architecture

Page 4 of (135) © 2-IMMERSE Consortium 2017

List of Authors
Mark Lomas - BBC

Rajiv Ramdhany - BBC

Andy Gower - BT

Ian Kegel - BT

Jonathan Rennison - BT

Martin Trimby - BT

Doug Williams - BT

Ian Wray - ChyronHego

James Walker - Cisco (also editor)

Pablo Cesar - CWI

Jack Jansen - CWI

Michael Probst - IRT

Christoph Ziegler - IRT

John Wyver - Illuminations

Reviewers
Ian Kegel - BT

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 5 of (135)

Table of contents

Executive Summary .. 3

List of Authors ... 4

Table of contents .. 5

Abbreviations and Definitions .. 10

1 Use Case Summary .. 13

Service Prototype Summaries ... 13

2 Requirements ... 15

2.1 Overview ... 15

2.2 Core Technical Requirements ... 16

3 System Architecture - Overview .. 18

4 Platform Architecture ... 19

5 Application Architecture .. 21

5.1 High-level Requirements ... 21

5.1.1 Sustainable Application Development .. 21

5.1.2 Presentation ... 21

5.1.3 Multi-device Support ... 22

5.2 Application Stack .. 22

5.2.1 Web Applications and Reusable Components... 22

5.2.2 Host Application .. 23

5.2.3 Launcher Application .. 23

5.3 Device Roles.. 23

5.3.1 Mobile & Desktop Companion Device Stacks .. 24

5.3.2 HbbTV Master Device Stack... 25

5.3.3 Emulated HbbTV Master Device Stack .. 25

5.3.4 Headless Companion Device Stack ... 25

5.4 Web Application Architecture ... 26

5.5 Application Architecture Technology Choices ... 27

5.6 Deployment Considerations .. 28

6 Service Architecture .. 29

6.1 Service Descriptions .. 31

6.1.1 Service Registry .. 31

6.1.2 Device Discovery .. 31

6.1.3 Timeline... 34

D2.1 System Architecture

Page 6 of (135) © 2-IMMERSE Consortium 2017

6.1.4 Layout .. 34

6.1.5 Server-Based Composition .. 35

6.1.6 Timeline Synchronisation .. 36

6.1.7 Content Protection and Licensing ... 40

6.1.8 Identity Management and Authentication ... 41

6.1.9 Session (Lobby) and Call Services .. 44

6.1.10 Logging ... 45

6.1.11 Analytics .. 47

6.1.12 Origin Server / CDN .. 48

6.1.13 TV Platform ... 49

7 Production Architecture ... 50

7.1 Production Content and Data Flows .. 50

7.1.1 Timeline Description ... 50

7.1.2 Layout Requirements .. 50

7.1.3 Media Objects .. 50

7.1.4 DMApp Components .. 51

7.1.5 Native Companion Applications ... 51

7.1.6 HbbTV Applications ... 51

7.1.7 Live Trigger Events ... 51

7.2 Prototype Service 1 – Watching Theatre at home ... 51

7.2.1 Existing Workflow .. 51

7.2.2 Additional Content and Data Flows .. 52

7.3 Prototype Service 2 – Theatre in School ... 53

7.3.1 Existing Workflow .. 53

7.3.2 Additional Content and Data Flows .. 53

7.4 Prototype Service 3 – MotoGP at home .. 53

7.4.1 Existing Workflow .. 53

7.4.2 Additional Content and Data Flows .. 54

7.5 Prototype Service 4 – Watching Football in a Pub .. 54

7.5.1 Existing Workflow .. 54

7.5.2 Additional Content and Data Flows .. 55

7.6 Media formats used by 2-IMMERSE Production Associates ... 55

7.6.1 BT Sport HD Production ... 55

7.6.2 BT Sport UHD Production .. 56

7.6.3 BT Sport Delivery ... 57

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 7 of (135)

7.6.4 Royal Shakespeare Company Delivery ... 57

7.7 Testing, Monitoring and Analytics .. 58

7.7.1 Overview ... 58

7.7.2 Testing ... 59

7.7.3 Monitoring ... 59

7.7.4 Analytics .. 59

8 Requirements – Architecture Mapping ... 60

9 Technology Overview .. 62

9.1 System Setup ... 63

9.1.1 DIAL ... 63

9.1.2 Device Discovery in HbbTV 2.0 ... 64

9.1.3 Second-Screen Framework .. 66

9.1.4 W3C Presentation API .. 67

9.1.5 W3C Remote Playback API .. 68

9.1.6 UPnP Multiscreen .. 69

9.2 Distributed Media Applications .. 70

9.2.1 Overview of application-layer technologies .. 70

9.2.2 Meteor ... 71

9.2.3 Web Components .. 73

9.2.4 Television Application Layer (TAL) ... 75

9.2.5 WebRTC .. 76

9.3 Layout and Composition ... 78

9.3.1 Spatial .. 78

9.3.2 Temporal ... 79

9.3.3 Composition .. 83

9.4 Device and content synchronisation .. 85

9.4.1 HbbTV / DVB CSS synchronization ... 85

9.4.2 Content Synchronisation Events.. 87

9.4.3 Ad Insertion/Ad Replacement ... 88

9.5 Authentication and Security .. 89

9.5.1 Access Control .. 89

9.5.2 Cross Platform Authentication .. 92

9.6 Production ... 93

9.6.1 Object-based Production Tooling .. 93

9.6.2 TRACAB ... 95

D2.1 System Architecture

Page 8 of (135) © 2-IMMERSE Consortium 2017

9.6.3 Virtual Placement .. 96

9.7 Media and Metadata Delivery ... 98

9.7.1 Adaptive Streaming ... 98

9.7.2 Media formats supported by HbbTV ... 100

9.7.3 Dolby AC-4 ... 102

9.7.4 360 degree / Immersive Video .. 103

10 Conclusions and Next Steps .. 108

 Watching Theatre at Home User Stories ... 109 Annex A

 Intra-Location and Inter-Location Media Synchronisation with DVB-CSS 115 Annex B

B.1 Timeline Correlations .. 115

B.2 WallClock Synchronisation ... 115

B.3 Timeline Synchronisation Service ... 116

B.4 Reusing DVB-CSS Interfaces ... 117

B.5 Site-Local/Intra-Home Synchronisation .. 118

B.6 Inter-Home Synchronisation ... 120

B.7 Intra-Home Synchronised Experiences Merging into an Inter-Home Synchronised

Experience ... 121

 Server-based Media Composition .. 123 Annex C

C.1 Goal ... 123

C.2 Example compositions .. 123

C.2.1 Example #1 .. 123

C.2.2 Example #2 .. 123

C.2.3 Example #3 .. 124

C.2.4 Further examples ... 124

C.3 Functional description ... 125

C.4 Functional Flow ... 125

C.5 Composition Latency .. 127

C.6 Compositing Devices .. 127

C.6.1 Local Versus Remote Compositing ... 127

C.6.2 Thin Clients ... 128

C.7 Interfaces ... 128

C.8 Selected Technology ... 128

 Experience Deployment .. 129 Annex D

D.1 2-IMMERSE Native Application Deployment ... 129

D.2 HbbTV 2.0 TV/CSS Application Deployment .. 129

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 9 of (135)

D.3 HTML Television Application Deployment ... 130

D.4 Broadcast-Dependent Application Deployment .. 130

D.5 Broadcast-Independent Application Deployment ... 130

D.6 HTML Companion Application Deployment ... 131

D.7 Content Deployment .. 131

D.8 Web Application Life Cycle .. 131

D.9 TV Versus CSS Initiated Deployment .. 131

D.10 Upgrades .. 133

 Testing and Validation .. 134 Annex E

E.1 System testing.. 134

E.2 Content/user experience application testing .. 135

D2.1 System Architecture

Page 10 of (135) © 2-IMMERSE Consortium 2017

Abbreviations and Definitions

AVC Advanced Video Coding (H.264/MPEG-4 Part 10 AVC)

Box A metaphor for users sharing an experience (i.e. in the same session) but

in different physical locations (contexts), based on the concept of the

theatre box.

Context One or more connected devices collaborating together to present a media

experience. Each context has a contextId unique to its session. There can

be many contexts on a single LAN, but a device can only be a member of

one context at a time. Devices belonging to the same context must be able

to discover each other using DIAL. Devices can join or leave a context at

any time.

Correlation The relationship between two timelines specified as a pair of timestamps

(one from each timeline) and a speed value

CSA Companion Screen Application

CENC Common Encryption

CSS-CII DVB-CSS Content Identification & other Information protocol

CSS-TS DVB-CSS Timeline Synchronisation protocol

CSS-WC DVB-CSS WallClock Synchronisation protocol

DASH Dynamic Adaptive Streaming over HTTP

DMApp Distributed Media Application – a set of software components that can be

flexibly distributed across a number of participating multi-screen devices.

DMApp
Component

A software component that renders media object(s), or supports viewer

interactions.

DVB-CSS DVB’s Companion Screen and Streams specification

Experience The experience of consuming a Distributed Media Application across

multiple participating devices in a context.

Experience

Timeline

Time since the start of an experience. The progress of time during an

experience and the time positions when ‘activities’ such as the playback of

a media object are scheduled to happen.

HbbTV Hybrid broadcast broadband TV

HEVC High Efficiency Video Coding (H.265/MPEG-H Part 2 HEVC)

HLS HTTP Live Streaming

Lobby A construct that allows groups of users who are members of the same

session (but potentially different contexts) to come together and

communicate. A session can have many lobbies or “rooms”. Users can join

or leave a lobby at any time and new lobbies can be created and destroyed

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 11 of (135)

at any time.

Media Composition

Protocol

A protocol for describing how media objects / feeds should be composited

together over time to produce a presentation optimised for a particular

presentation device.

Media Object

Timeline / DMApp

Component

Timeline

The playback progress of a media object. This can be reported as time

since start of the media playback in seconds. Alternatively, presentation

timestamps signalled in the media stream e.g. PTS or TEMI in broadcast

streams can be reported.

Media Objects Media streams or assets that comprise an experience. Includes today’s

typical programme elements (main A/V, audio description, subtitles etc.),

but would also include clean feeds, audio commentary, auxiliary camera

feeds, metadata feeds, images, graphics, A/V clips (e.g. highlights /

replays).

MSAS Media Synchronisation Application Server – a server entity in HbbTV2.0

(and DVB-CSS) stacks that collects current playback timestamps from a

number of synchronisation clients and synchronises them.

Session One or more contexts that are synchronised together into a shared media

experience and presented simultaneously across sites. Contexts can join

and leave a session at any time. Each session has a globally unique

sessionId.

Synchronisation

Timeline

A selected timeline to which a DMApp component will align itself e.g. the

experience timeline. A correlation between the Synchronisation Timeline

enables conversion of time values from the DMApp component timeline

and the Synchronisation Timeline.

Synchronisation

Server

A server entity that collects the current timeline position from the

Synchronisation Timeline and distributes this timestamp to

synchronisation clients connected to it.

Synchronisation

Client

A client entity that receives Synchronisation Timeline updates from the

Synchronisation Server and synchronises to the expected timeline position

of its own media playback based on the update.

Timeline The notion of progress of time or media playback progress. A timeline

may have its own time representation i.e. a tick rate (ticks per second) and

a speed (speed at which the timeline progresses e.g. 1.0, 2.0, etc.).

Timeline Updates Intermittent presentation timestamps indicating progress along the

timeline. Specified in the units of the timeline. Usually specified as a pair

of timestamps, the second timestamp representing the WallClock time

when the presentation timestamp was read.

TLS Transport Layer Security

TS Transport Stream

User Someone consuming the media experience within a given context and

session. A user has a userId, obtained by logging into one or more devices

belonging to a context

D2.1 System Architecture

Page 12 of (135) © 2-IMMERSE Consortium 2017

UX Engine User Experience Engine - orchestrates the distributed multi-screen

experience, managing each of the participating client devices, and

adapting the presentation to the user’s environment, their participating

devices and preferences.

WallClock A shared clock representing a common notion of time by all entities

enabling or participating in an experience.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 13 of (135)

1 Use Case Summary

The 2-IMMERSE project will develop four service innovation prototypes of multi-screen

entertainment experiences. Unlike existing services, the content layout and compositions will be

orchestrated across the available screens and an object-based production approach will enable the

experiences to be immersive, personalised and efficiently delivered.

Descriptions of these service prototypes and user stories derived from them form the basis of the

requirements for the system architecture. These are documented in project deliverable D4.1. The

service prototype descriptions are at different levels of maturity, which reflects that the trials of the

service prototypes are planned at different points within the project.

A brief summary of the service prototypes is included below for reference. For the Watching Theatre

at Home service prototype, which is the first to be trialled, a set of user stories has been generated.

These are included in Annex A - Watching Theatre at Home User Stories, also for reference. These

include a set of agreed priorities. User stories have not yet been generated for the other service

prototypes but will be in due course.

Service Prototype Summaries

Watching Theatre At Home

This service innovation prototype is called Theatre at

Home because it offers an enhanced social experience for

users in a domestic context to watch a live or “as live”

broadcast of a theatre performance. The user will have a second screen

device that can access synchronized information streams directly from the

provider of the broadcast and from the web through social media

applications including Twitter but which can also, at times, feature audio

and video chat with others who are watching.

The service innovation prototype will enable a user to watch a theatre production, shot with multiple cameras,

as either a live or an ‘as live’ experience. Viewers will be able to contribute to and monitor different forms of

feedback throughout the performance, and to discuss it with others who are watching at the same time, either in

a different room or in a different home.

Owner: John Wyver (Illuminations) Rights Originator: Royal Shakespeare Company

Watching Theatre At School

This service innovation is called Theatre in School. This

service enables pupils in schools across the country to watch a filmed

performance of a play performed by the Royal Shakespeare company.

Pupils are able to augment the main filmed presentation of a play with

access to related supporting content and experiences to help them deepen

their understanding of the play. This related content may include a

synchronised transcript of the play, character summaries, short films

featuring the talent in the play and even live communication session with

the actors and other creative talent associated with the production.

Owner: John Wyver (Illuminations) Rights Originator: Royal Shakespeare Company

D2.1 System Architecture

Page 14 of (135) © 2-IMMERSE Consortium 2017

Watching MotoGP at Home

This service innovation will provide a user with a personalised experiences that

can be controlled to suit a viewer’s interests/experience with the sport. It will

allow video footage and telemetry data to be displayed on a mixture of a large

TV and on smaller personal screens. The trials with consumers will take place in

multiple sites. Research insights will be captured from device/service

instrumentation and follow-up qualitative questionnaires and interviews with

trialists. We also plan to carry out VIP demos that could be held both at the track

and at other VIP locations (BT Centre, BBC, Cisco, etc.).

The trial will focus on the Great Britain MotoGP race (September in 2017).

Owner: Andy Gower (BT) Rights Originator: Dorna Motor Sports

Watching Football In A Pub

This service innovation relates to an experience designed to suit UK city centre pubs

showing sport. It will mix large screen viewing with

opportunities to access content and interactive experiences that may be playful

and promotional on personal screens. We anticipate a system capable of

supporting a diverse range of experiences centred, ultimately, on a single sport

event but that finds a way to encourage and promote business within the pub

through promotions and possibly competitions.

The trial will be centred on the Emirates FA Cup Final that will be held in May 2018.

Owner: Martin Trimby (BT) Rights Originator: The Football Association

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 15 of (135)

2 Requirements

2.1 Overview

As WP2 has started to consider the 2-IMMERSE system architecture, WP4 has been defining the trial

scenarios in parallel, with D4.1 only becoming available for a short while prior to this deliverable. We

have defined a set of Core Technical Requirements to allow us to develop the architecture. These Core

Technical Requirements are largely based on the vision outlined in the 2-IMMERSE project proposal

and are described in more detail in the following section.

Now that D4.1 is available, the architecture and core requirements will be reviewed against the details

of each of the four trial scenarios as they are defined at this early stage of the project. WP2 will evolve

the architecture to reflect the requirements of each of the 2-IMMERSE field trials as they emerge.

In the original 2-IMMERSE project proposal, we said:

“2-IMMERSE will develop an extensible, standards based delivery platform based on re-usable

components that will accelerate the development of new immersive multi-screen experiences,

accelerate the take-up of the HbbTV2.0 standard and contribute towards its evolution”

From this statement, we can define some guiding principles for how we approach the architecture and

development of the platform:

1. Sustainable production of live multi-device experiences – i.e. a cost-effective means to make

multi-device experiences in volume (with re-use rather than expensive ‘one-offs’).

2. Integrate with existing TV broadcasting services, using appropriate standards and practise to

produce an industrial strength solution.

3. Accelerate uptake of the HbbTV2.0 and contribute towards its evolution.

4. Leave something that’s plausible as a foundation for others to build on. Our solution has to be

extensible, has to use open source and potentially be open sourced, and it has to be made

accessible to developers.

5. Object-based broadcasting approach – Media is captured and delivered as objects.

6. Designed to work at scale - It has to work at scale if we want broadcasters to adopt this

technology

Extensibility and re-use are particularly important; the ability for us to add new services to the

platform as the successive service prototypes require additional features, or, for broadcasters to use

and extend the platform after the project is finished is essential. Similarly, for experience producers to

be able to reuse DMApps and DMApp components is essential for sustainable productions.

Architecturally, we are adopting a ‘micro-services’ approach. This is comprised of:

1. Services that are: "Small, focused and doing one thing very well”

2. The supporting ecosystem and authoring capability for new micro services

Both are extensible, scalable and following industry best practices, will give us a very clear separation

of concerns between our platform services and the supporting infrastructure.

D2.1 System Architecture

Page 16 of (135) © 2-IMMERSE Consortium 2017

Although we are very early in the development cycle, we aspire to the following principles:

• Early integration

• Continuous deployment

• Enterprise level software

• Focus on security, scalability, robustness and maintenance

2.2 Core Technical Requirements

The following requirements are considered to be essential to the 2-IMMERSE architecture. They have

been inferred from one or more of the four trial scenarios as defined at the beginning of the project.

They are all considered to be essential for the architecture and are deliberately expressed in a solution-

neutral way.

1. Association of multiple connected devices (clients) in a home/school/pub environment, with

detection of device features (discovery and launch).

A multi-screen environment is central to the 2-IMMERSE system, and a key challenge for the

project is to enable experiences to be adapted to arbitrary arrangements of connected devices.

Discovery of such devices and features is one of the first steps towards setting up an experience.

2. Delivery, decoding and rendering of multiple media streams on any client in the environment.

The processes associated with carrying heterogeneous media streams to a client and decoding

them are fundamental to a multi-screen experience. It should be noted that each client may have a

different capacity (for example bandwidth and processing resources) to decode media streams, and

this will need to be taken into account.

3. Composition of media in arbitrary and dynamic layouts/presentations.

Flexible composition is an essential enabler for interactive, personalised and adaptive multi-screen

experiences. The 2-IMMERSE system must enable control of both spatial and temporal media

composition.

4. Synchronised presentation of media between multiple clients in one or more environments.

Some 2-IMMERSE use cases describe shared experiences in which media streams must be

synchronised between multiple devices in the same environment (intra-location synchronisation)

and between devices in multiple environments (inter-location synchronisation).

5. Lobby/chat room to allow clients to meet during an experience.

Some 2-IMMERSE use cases describe experiences which are shared between groups of people in

different locations. A mechanism is therefore required to enable people to join a virtual group as

part of their experience. A lobby or chat room is the standard mechanism for achieving this.

6. Management of user identities to register and authorise access to experiences and enable

presence information to be shared.

2-IMMERSE trials are likely be provided over public networks and therefore need a mechanism to

control access to multi-screen experiences. Individual users (or possibly households) will need to

be identified if experiences are to be personalised or shared between groups in different locations.

Identification is also an important key against which interactions and system behaviour can be

recorded in order to analyse how experiences are being used.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 17 of (135)

7. Real-time audio and video communication between multiple home environments.

Some 2-IMMERSE use cases describe how participants in an experience which is shared between

multiple locations have the ability to see and hear each other during part of the experience. Real-

time communication places additional requirements on clients involved in a multi-screen

experience, including low latency transmission, local capture of audio and video streams and echo

control.

8. Tools to enable production personnel to have live control over aspects of composition in

home/school/pub environments.

9. User interface on one or more clients in the environments to interact with and control aspects

of the experience, which responds to the devices available in the environment.

A key feature of the 2-IMMERSE system is the ability for control of the multi-screen experience

to be shared between its production team and individual users. Both groups must therefore have

sufficient controls to make changes during playout. The type and design of the controls is

prescribed when the experience is created, and on the client side their composition must be

adapted to the client environment.

10. Tools and/or data formats to author a multi-screen experience in terms of layouts, events and

interactions.

2-IMMERSE multi-screen experiences will require a new approach to authoring which is

independent of any specific configuration of devices in the user environment. As a minimum this

will require new data formats to describe the elements of an experience and the rules for how they

can be assembled and interacted with. The project also anticipates the need for new tools to

support this process which reduce the barriers to entry for creative professionals as well as the

impact on the time and cost for creating an experience.

11. Each system component (especially each client) logs key aspects of its behaviour and these

logs are aggregated.

Recording user and system behaviour is an important requirement for the 2-IMMERSE system

because it will provide essential insight into how experiences are being used. By building

integrated multi-screen experiences from the ground up, the project has a unique opportunity to

understand how user attention moves between devices.

12. Offline analysis of client behaviour logs after the event.

2-IMMERSE must provide a mechanism for offline analysis of logs. This does not need to be part

of the 2-IMMERSE system itself and could potentially be achieved by enabling logs to be

imported into third-party tools or platforms.

13. Monitoring of key aspects of the system during operation with option to aggregate and feed

back into the experience.

In addition to recording logs for offline analysis, some 2-IMMERSE use cases describe how data

relating to user interactions and viewing behaviour may be presented within the experience (for

example within a pub environment). The system must therefore make this data available within

both the authoring and delivery/composition processes.

D2.1 System Architecture

Page 18 of (135) © 2-IMMERSE Consortium 2017

3 System Architecture - Overview

We have taken a ‘layered’ approach to documenting our system architecture, in order to maximise

clarity, and maintain an appropriate ‘separation of concerns’.

Our layers are defined as follows:

 Platform Architecture – the high-level architecture of the 2-IMMERSE platform.

 Service Architecture – the services that comprise the platform.

 Application Architecture – how our client applications are architected.

 Production Architecture – how the production capabilities are architected.

The sections that follow describe each of these architecture layers in turn in detail.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 19 of (135)

4 Platform Architecture

Figure 1 below shows our end-to-end platform architecture at a very high level. This shows a basic

flow from production through to platform services, with clients accessing those platform services to

present experiences to users. The Application Architecture, Platform Services and Production

Architecture are described in detail in the next sections of this document.

Figure 1: High-Level Platform Architecture

Figure 1 shows some example 3
rd

 party Internet services as being separate to the Platform; these would

typically be used by DMApp components to provide content, data and features specific to these

components, but not core system functionality. Examples might include social networks, collaboration

/ real time communications, live data feeds etc.

We also separate third-party app stores e.g. Apple App store (iOS), Google Play Store (Android), and

HbbTV vendor App Stores, as although not considered a core part of the platform, they are a

necessary existing mechanism through which client applications will be made available to end users.

The underlying TV Platform is also shown separately; we assume we will be building on an existing

TV Platform that is capable of delivering live and on-demand content. We have included this in our

service descriptions since it should be considered core, and the production architectures will still need

to be able to deliver content through the TV Platform.

D2.1 System Architecture

Page 20 of (135) © 2-IMMERSE Consortium 2017

Before describing the client application architecture and platform services in detail, we will introduce

or recap some important concepts and terms:

 Experience – The experience of consuming a Distributed Media Application across multiple

participating devices in a context.

 Context - One or more connected devices collaborating together to present a media experience.

Each context has a contextId unique to its session. There can be many contexts on a single

LAN, but a device can only be a member of one context at a time. Devices belonging to the

same context must be able to discover each other using DIAL. Devices can join or leave a

context at any time.

 User Experience (UX) Engine - orchestrates the distributed multi-screen experience, managing

each of the participating client devices, and adapting the presentation to the user’s environment,

their participating devices and preferences. This has been decomposed into two services;

timeline and layout.

 Media Composition Protocol – a protocol for describing how media objects / feeds should be

composited together over time to produce a presentation optimised for a particular presentation

device.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 21 of (135)

5 Application Architecture

5.1 High-level Requirements

2-IMMERSE multi-screen entertainment experiences are composed of many applications configured

to work together to deliver the look and feel of a single application. 2-IMMERSE calls this collection

a Distributed Media Application, or DMApp.

The application architecture must address the following requirements:

1. Development of experiences must be sustainable.

2. Experiences must be tailored to the content being delivered.

3. The presentation should be consistent on all devices.

4. Functionality must be available on multiple device types.

5.1.1 Sustainable Application Development

Producers need be able to create experiences quickly and efficiently for a large range of programmes if

the multi-screen format is to succeed. DMApp development can be made sustainable by:

1. Exploiting commonality between programmes (i.e. genres)

2. Adopting a library of reusable templates and components that can be re-skinned to capitalise on

prior investment

3. Adopting technology that allows an application to be written once, but deployed to multiple

devices

4. Adopting data-driven components that can be reconfigured for use in different contexts

5. Deferring production decisions to audiences and smart layout engines to reduce the number of

device permutations and configurations to author for and test

Perhaps the most impactful way to reduce the cost of developing an experience is to license

components from 3
rd

 party developers and to foster a community of open source components. This

might be the only option in circumstances where there is limited budget for developing multi-screen

experiences in-house.

5.1.2 Presentation

Consistent appearance of components across all devices has a bearing on the perceived quality of

experience. Moving a component of functionality from one device to another should preserve its

visual appearance. This is difficult without a common renderer running on all devices and it also

implies migration of state.

HbbTV 2.0 provides an application environment based on the open web standards of HTML5, CSS3

and JavaScript. This enables developers to author applications once and use them across a range of

devices. It provides a basis for migrating functionality from one screen to the next, whilst preserving

appearance.

D2.1 System Architecture

Page 22 of (135) © 2-IMMERSE Consortium 2017

5.1.3 Multi-device Support

Companion screen devices aren’t themselves HbbTV 2.0 terminals but they can run environments that

are equivalent using web browsers or native applications that wrap web browser functionality.
1

Using web technology to construct distributed media experiences reduces the number of operating

systems to support, however abstractions such as the Television Application Layer (TAL) may still be

required to address minor incompatibilities between devices.

Homogenising the application run-time environment by using web technology and exposing low-level

media APIs via JavaScript simplifies the task of authoring, testing and deploying a distributed media

experience. It provides a cross-platform ‘Media OS’ against which 2-IMMERSE experiences are

authored.

5.2 Application Stack

Devices participating in a 2-IMMERSE experience must implement the stack shown below.

Figure 2: Abstract Application Stack

A distributed media experience is composed of several native and non-native applications running on

multiple devices.

5.2.1 Web Applications and Reusable Components

Web applications and reusable components deliver the core user experience. Both are written using

HTML5, CSS3 and JavaScript. Reusable components deliver individual features or act as containers

that aggregate other components together. Components also leverage other units of reuse such as

JavaScript libraries and templates. The Web Application hosts these components and is also

responsible for their life cycle. W3C Web Components are a candidate technology for reusable

components although other choices are available
2
.

1
 See http://www.oipf.tv/web-spec/volume5a.html for minimum browser requirements for HbbTV 2.0.

2
 See https://www.youtube.com/watch?v=5sETJs2_jwo for Netflix’s solution that swaps HTML and CSS for

primitive boxes and pure JavaScript.

http://www.oipf.tv/web-spec/volume5a.html
https://www.youtube.com/watch?v=5sETJs2_jwo

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 23 of (135)

5.2.1.1 Component Life Cycle

Users may personalise their setup by deselecting components or enabling new ones during the

experience. The active set of components is also influenced by companion devices joining and leaving

the experience and by layout changes triggered by the broadcaster.

For example, a user may choose to enable a component from within the virtual lobby of the ‘theatre at

home’ use case in response to a recommendation from a friend received by voice chat. The

introduction of this new component may also cause layout changes on other devices.

The active component set can be manually configured from any companion screen device to

personalise the experience. A reusable multi-device configuration component is therefore required.

Administrators may choose to limit the availability of components to certain times or restrict access

through authentication and DRM schemes.

5.2.2 Host Application

The Host Application provides a common runtime environment across all devices and is responsible

for hosting web applications. The Host Application is a native application written using a wrapper

technology such as Cordova or Titanium, or a web browser (running native plugins). On an HbbTV

2.0 terminal device, the host application is an implementation of the HbbTV 2.0 profile. The host

application’s job is to provide a consistent web development platform on all devices and to expose

platform APIs via JavaScript bindings. An HbbTV 2.0 terminal has an application manager that is

responsible for launching TV applications and managing their life cycle. The 2-IMMERSE application

stack features a similar component for managing web application life cycle on companion devices.

5.2.3 Launcher Application

A device may also optionally run an HbbTV companion screen launcher service to permit HbbTV 2.0

terminals to launch companion screen applications. The Launcher Application is a native application

provided by the television manufacturer. Part of the process of launching a companion screen from an

HbbTV 2.0 master terminal is proprietary and the manufacturer may elect to support a limited number

of companion platforms. This is a consideration to take into account when bootstrapping a 2-

IMMERSE experience.

5.3 Device Roles

Devices have specific roles within a 2-IMMERSE experience and this gives rise to differences in the

application stack specification for each of those devices.

Device Role Description

Mobile & Desktop Companion HbbTV 2.0 CSS running on Android and iOS phones/tablets

and desktop PC/laptops. The desktop companion can be used

for integration testing.

HbbTV Master HbbTV 2.0 Television (due to market Q2 2016) acting as a

master device.

D2.1 System Architecture

Page 24 of (135) © 2-IMMERSE Consortium 2017

Device Role Description

Emulated HbbTV Master Placeholder HbbTV 2.0 STB for the development and testing

of extended features until HbbTV 2.0 devices are readily

available. This stack represents the HbbTV 2.0 profile subset

used by 2-IMMERSE experiences and may include features

classified as optional in the HbbTV 2.0 specification.

Headless Companion A headless companion that permits devices lacking a screen to

participate in 2-IMMERSE experiences. This is useful for

automated testing where it is more practical to spin-up a

headless companion instance than a physical device with

screens. A headless companion can be run on IoT devices in

the home as part of an integrated experience. One example is

an IoT light bulb that is dimmed to warn viewers that a

programme is about to start, simulating a cinema or theatre

experience more closely. The headless companion stack can

also be run on embedded devices, servers or in continuous

integration environments.

It might be useful to consider a games console application stack too. Games consoles have powerful

graphics processing capabilities that make them suitable for hosting a local composition service or the

UX engine, including layout and timeline services.

5.3.1 Mobile & Desktop Companion Device Stacks

On mobile devices, the 2-IMMERSE Cordova application exposes DVB CSS (CII, WC, TS), DIAL,

App2App and WebRTC via JavaScript APIs. The underlying functionality is provided by Cordova

plugins written natively for iOS and Android. The BBC iOS companion library and IRT Android

companion library will be utilised for this purpose.

On desktop devices, the BBC Chrome extension for companion apps will provide media player control

and HbbTV discovery in a browser. DVB CSS (CII, WC, TS) and App2App APIs will be exposed to

JavaScript via further desktop browser extensions.

On continuous integration servers, a replacement browser driver can be used to help run automated

tests.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 25 of (135)

5.3.2 HbbTV Master Device Stack

The HbbTV master stack will utilise the BBC TAL library (or equivalent) because not all HbbTV 2.0

devices on the market will provide identical functionality. For example, there are optional parts to the

HbbTV 2.0 profile and there will be implementation differences and firmware bugs from one

manufacturer to the next.

5.3.3 Emulated HbbTV Master Device Stack

The emulated HbbTV master device may be a small form-factor PC, such as a Raspberry Pi or HDMI

stick, running a virtual machine or Docker image to emulate HbbTV 2.0 terminal features. The stack

can play MPEG-2 transport streams using the BBC’s CSSTV environment, a C++ gstreamer-based

prototype extended to include support for DVB-DASH playback. The application environment is

provided via a browser such as FireFox or Chromium leveraging a FireHbbTV-like approach to run

HbbTV master applications in the browser. An infrared remote control add-in will provide the browser

with user interactions and the BBC’s “CSSTV in browser” prototype will be leveraged to provide a

proxy for UDP traffic and JavaScript support for media synchronisation.

5.3.4 Headless Companion Device Stack

D2.1 System Architecture

Page 26 of (135) © 2-IMMERSE Consortium 2017

DVB CSS (CII, WC, TS), DIAL & App2App APIs are exposed to node.js via extensions. One such

example is Fraunhofer "hbbtv": a module for node.js. It implements the DIAL protocol and the

extensions defined in the HbbTV 2.0 specification. The module can emulate both the DIAL client

(companion screen) and the DIAL server (HbbTV device).

Node.js modules (as opposed to native extensions) can be used to modularise applications into

components and to implement the functionality of the headless device application environment.

5.4 Web Application Architecture

Components provide much of the functionality associated with a web application, but there are

architectural requirements that must be satisfied by every web application regardless of which

components are activated. The following table highlights common architectural concerns associated

with web application development that the application architecture must address in order to support

DMApps.

Single-page application (SPA) infrastructure SPAs offer a more native-app-like experience for

the user. Single page apps are distinguished by

their ability to redraw any part of the UI without

requiring a server round-trip to retrieve HTML.

Caching is also used to minimize server round

trips.

(See http://singlepageappbook.com/goal.html)

Separation of concerns

Ensuring separation of concerns by implementing

the request processing logic and application logic

separately from the user interface. Choosing a

pattern such as MVC or MVVM to simplify

event-driven programming of user interfaces

Request Processing RESTful service calls between the browser and

the server are asynchronous. The application

architecture and user experience must be designed

to handle asynchronous requests

View management Views observe model changes and redraw the UI

automatically using an event change system that

listens to notifications from models. Views also

http://singlepageappbook.com/goal.html

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 27 of (135)

manage internal view state

Navigation A consistent navigation structure for the

application that’s decoupled from application

logic

Session state management The web application must deal with what to store,

where to store it, and how long information will

be kept. The application must store state (both

locally and remotely, when possible) so that users

can pick up wherever they left off

Service clients Client libraries are required by the web

application in order to invoke service APIs. They

hide the client from details of the communication

protocols used to transfer data to/from the server

Connection/disconnection management “Offline-first” infrastructure is required because

network connections can be unreliable or slow.

This principle also improves responsiveness of

the application’s user experience

Component life cycle management A more specific requirement for 2Immerse web

applications is the ability to instantiate/kill

reusable component instance(s), hide/show and

enable/disable components and refresh or upgrade

components.

Logging Designing an effective logging and

instrumentation strategy is important for the

security and reliability of the application. Typical

events that are logged in a web application

include state transitions, component activation,

performance, latency, bandwidth, user

interactions and analytics.

5.5 Application Architecture Technology Choices

Certain technology choices and decisions remain outstanding pending further investigation. In

particular:

1. Choice of web browser wrapper technology (Cordova, PhoneGap, Titanium)

2. Choice of component technology (Web Components, Polymer, X-tag, pure JavaScript)

3. Scene management (Virtual DOM, React-art, Gibbon)

4. Technology choices for native HbbTV/CSS web browser and web view plugins.

5. Choice of state management framework

6. Whether a game application stack is required

D2.1 System Architecture

Page 28 of (135) © 2-IMMERSE Consortium 2017

5.6 Deployment Considerations

The various application components and layers identified in this section have different deployment

models associated with them, and as we develop each of these, and each of the trial experiences, we

will need to manage their deployment carefully. This topic is given further consideration in

Experience Deployment.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 29 of (135)

6 Service Architecture

The table below summarises the core services that comprise the 2-IMMERSE platform, and where

they could be deployed (in-home or cloud). Note that in-home here refers to the local environment of

the participating devices, so for the non-domestic trials this would represent In-school or In-pub.

Service Description In-Home Cloud Scale

Service Registry Service discovery

Device Discovery
(inc. DIAL client and server)

Device discovery and
communications

UX Engine

a) Timeline
b) Layout
c) Server-based Composition

DMApp orchestration,
adaptation and
composition

per household
per household

per device / per
composition
permutations

Timeline Synchronisation
a) In Home
b) Between Home

Multi-screen content
synchronisation

per household
per session

Content Protection/Licensing
Service

Media content
protection

Identity Management and
Authentication

Identity management
and authentication

Session (lobby) Service User group discovery
and management

Call Server (SIP) Real time
communications
services

Logging System activity
monitoring

Analytics Platform usage and
performance insights

Origin Server/CDN Media object and
DMApp component
distribution

TV Platform Live and on-demand TV
content distribution

Table 1: Core Services

In addition to these core services, additional services will be required on a trial specific basis; for

example, backend services may be required to support particular DMApp components that are part of

the trial experience, or, specific services may be required as part of the production workflow for that

trial.

D2.1 System Architecture

Page 30 of (135) © 2-IMMERSE Consortium 2017

As noted in the table above, for the UX Engine and Sync services, we can see two envisaged

deployment options; one where these services are deployed in-home (for example running on the TV

device), and alternatively with these services running in the cloud. These two models are shown in

Figure 3 and

Figure 4 below. We do not envisage supporting both models in a single trial, but will likely decide on

a particular deployment model on a trial specific basis.

Figure 3: Service / Client Deployment - in-home UX Engine Services

Figure 4: Service / Client Deployment - cloud UX Engine Services

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 31 of (135)

6.1 Service Descriptions

The sections that follow define services, provide descriptions of their functionality and interfaces, and

where appropriate identify selected technology.

6.1.1 Service Registry

Client devices and applications that need to use platform services, need to be able to establish their

availability, and where they are hosted. A typical mechanism for enabling this is a service registry,

which is deployed to a well-known location (the address of which would typically be part of the

application configuration). As the platform services are provisioned, they register with the service

registry so that they are discoverable by the applications wishing to use them.

Where we may have services deployed in-home or in the cloud, our service registry solution needs to

be able to accommodate this efficiently.

Selected Technologies

There are a number of widely available and open source implementations of service registry (Consul,

Spring Cloud, ZooKeeper et al.), some of which will be integrated into a particular cloud PaaS

(platform as a service); so it may be that selection of a PaaS will drive the use of a particular service

registry.

The particular solution we will adopt is still to be determined.

6.1.2 Device Discovery

The device discovery service enables applications, e.g. running on companion screen devices, to detect

available TV sets and STBs and services they support, e.g. sync service, in local networks.

Additionally, the service allows applications to be launched on the discovered device. The service also

provides a way to check whether an application is already running on a discovered device, via

application to application (App2App) communication.

D2.1 System Architecture

Page 32 of (135) © 2-IMMERSE Consortium 2017

Device Discovery Architecture Overview

Figure 5: Device Discovery Architecture Overview Diagram

At the time of writing it is assumed 2-IMMERSE will adapt the protocols as for Discovery, Launch

and App2App Communication as defined in the HbbTV 2.0 specification. Figure 5 provides a high-

level overview of the specified components, the information exchanged between these components

and the protocols used to transfer the information between components. The diagram uses the

following notation:

 Boxes with round corners denote devices (i.e. HbbTV terminal and Companion Device).

 Boxes with straight corners denote software components (e.g. App2App Server, DIAL Server,

Broadcaster Companion App).

 Arrows indicate the direction of information flow. Labels indicate what information is

exchanged. In those cases where the information flow is within the scope of the HbbTV 2.0

specification (blue arrows), text in brackets provide details on the interface or protocol used to

transfer the information.

 Blue colour indicates that the respective interface and protocol as well as the behaviour of the

respective component is specified in the HbbTV standard.

 Grey colour indicates that the specification and implementation of the respective components,

protocols or interfaces is under the authority of the TV manufacturer. It is out of scope of the

HbbTV 2.0 specification.

 Green colour indicates that indicates that the specification and implementation is under the

authority of the Companion Screen manufacturer.

 Orange colour labels those components who are under the authority of the provider of the user

experience (e.g. broadcaster).

 Dashed lines divide the diagram into three areas, each labelled with a roman number.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 33 of (135)

Area I. covers the elements of the Discovery Architecture that deal with companion-screen interaction

initiated by an HbbTV application. Major components are the HbbTV CS Manager on the HbbTV

terminal side and the TV Manufacturer Launcher App on the companion screen side. The HbbTV CS

Manager exposes a JavaScript API that allows the HbbTV Application to initiate the Discovery of

companion screens and subsequently request the launch of a web-based or native app on the respective

device. In case a desired native app is not available on the targeted companion device yet, the HbbTV

application can request the installation of that native app. It is important to note that the protocols for

Discovery of companion screens and the Launch of Apps on these devices is out of scope of the

HbbTV 2.0 specification, but under the authority of the TV manufacturer. To be able to Discover

users’ devices on the local network it as crucial that they have the TV Manufacturer Launcher App

installed on their companion screen device.

Area II. covers components, interfaces and protocols that allow Companion Screen Apps to discover

HbbTV terminals and to launch HbbTV apps on these devices. For this purpose HbbTV 2.0 adapts the

DIAL protocol (http://www.dial-multiscreen.org/). For discovery, DIAL references SSDP (simple

service discovery protocol) which is part of the UPnP stack. To discover an HbbTV terminal,

Companion Screens send a UDP message to multicast address 239.255.255.250. Terminals willing to

connect respond with a Notify message. The message’s header contains the UPnP Device Description

URL, which is used to retrieve the REST endpoint of the DIAL service. To launch an HbbTV App on

the HbbTV terminal the companion app sends a HTTP POST request to this endpoint containing an

XML AIT. Via HTTP GET the Companion Application can retrieve the endpoints for app-to-app

communication (see Area III.) and companion screen synchronisation.

Area III. covers those parts that enable bi-directional exchange of messages between Companion

Screen Applications and HbbTV Applications. Messaging is done via the WebSocket protocol. For

this purpose the HbbTV terminal provides a WebSocket-Server (App2App Server) that provides

endpoints for the HbbTV application and Companion Screen Applications.

Interfaces

 Query device: Listens for local device discovery queries, responds to issuer with location of

device description.

 Get device description: Returns description of the device including supported services:

o Application launch

o Local synchronisation

o app2app communication

 Launch application: Launches an application on the device.

o Launch is approved by either checking a whitelist or getting user approval

o Returns status, whether launch was successful, denied by user or an error like

application could not be loaded.

 Open app2app connection: Open a connection to an application running on the device. Returns

a connection, which gets paired with an application if that is already running or later on when

it gets started on the device. A pairing completed message is send afterwards.

D2.1 System Architecture

Page 34 of (135) © 2-IMMERSE Consortium 2017

6.1.3 Timeline

The timeline service is responsible for managing the timeline of an experience as it is presented over a

set of participating devices (i.e. a context). It uses authored timeline metadata and optionally live

triggers to determine what media objects / DMApp Components are available for potential

presentation as the timeline of the experience progresses.

As the current set of media objects / DMApp Components changes (either through reaching an event

in the timeline metadata, or on receiving an external event trigger), the timeline service will send an

updated component list to the corresponding layout service instance.

The format for timeline metadata is still to be specified, but will need to describe the changing

availability of media objects and DMApp Components that comprise an experience over the duration

of that experience.

This service could either be deployed in the cloud (an instance for each context), or within a client

device.

The timeline service has the following interfaces

 Load experience (content id)

 Ingest timeline metadata (content id, URL)

 Sync

 Event Trigger

 Component list

6.1.4 Layout

The layout service is responsible for managing and optimising the presentation of a set of DMApp

Components across a set of participating devices (i.e. a context). Given a set of media objects /

DMApp Components, authored layout requirements, user preferences, and the set of participating

devices and their capabilities, the layout service will determine an optimum layout of components for

that configuration. It may be that the layout cannot accommodate presentation of all available

components concurrently.

The service instance maintains a model of the participating devices in the environment, and their

capabilities e.g. video: screen size, resolution, colour depth, audio: number of channels, interaction:

touch etc.

The layout requirements will specify for each media object/DMApp component, layout constraints

such as min/max size, audio capability, interaction support, and whether the user can over-ride these

constraints. Some of these constraints may be expressed relative to other components (priority,

position, etc.).

The grammar expressing layout requirements is still to be specified.

Layout changes can be triggered by a number of events:

 On receiving an updated component list from the layout service

 On client devices joining or leaving a context (through a manage context call).

 On receiving a manage component call from a client device application.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 35 of (135)

As such layout updates need to be pushed to all participating clients (for example, by a mechanism

such as WebSockets).

The data format describing layout that is pushed to clients will be logically related to the Media

Composition Protocol defined in the Sever-Based Composition service, since the layout format will

essentially describe the composition of DMApp components on a device display, however the format

of this data is still to be specified.

This service could either be deployed in the cloud (an instance for each context), or within a client

device.

The layout service has the following interfaces:

 Manage context (Create / Join / Leave) (capabilities)

 Component List (a list of the currently available components)

 Manage component (Hide/Show/Move/Clone) - subject to role/permissions

 Load experience (content id)

 Ingest layout requirements (content id, URL)

 Layout (metadata describing the current layout of components across all participating devices)

6.1.5 Server-Based Composition

The composition service provides on-the-fly compositing of media feeds on client devices or via

dedicated servers for client devices with limited bandwidth, performance or battery life. Examples of

composition include:

 Picture-in-picture

 Cropping and scaling

 Video tiling

 Animation

 Info-graphic rendering

 Camera/VT transitions (cross-fade, fade to white/black, straight cut)

 Visual effects

 Audio mixing

 Rendering of textual overlays e.g. subtitles

Responsive multi-screen layouts require clean feeds to be composited after broadcast in order to adapt

to the changing client ecosystem of users, apps and devices. The composition service runs downstream

from production and can be located:

 At the origin/head-end as a permutation cache

 In the cloud

 On a networked device local to the experience

 On a client device

D2.1 System Architecture

Page 36 of (135) © 2-IMMERSE Consortium 2017

The composition service is capable of generating outputs that are tailor-made for the resolution, colour

depth and bandwidth requirements of each client device. Lightweight compositing operations such as

overlaying menus will be performed on client devices such as STBs, televisions, tablets and

smartphones. These client devices still have the separate task of synchronising the playback of

composited media feeds generated by the composition service.

A more detailed description of the composition service is given in Annex C.

Interfaces

The composition service has interfaces for:

 Configuration (e.g. secure licensing server, CDN origin server, media feeds)

 Media Composition Protocol

 Exchanging DRM keys and authentication

 Remote control and monitoring

 Life-cycle management

The Media Composition Protocol itself is part of the composition service’s interface.

6.1.6 Timeline Synchronisation

A multi-device synchronised experience consists of a number of media objects that will be presented

on separate participating devices (multi-device presentation is managed by the Layout and Timeline

services, see Section 6.1.4), at times specified on the experience timeline. These media objects are

manifested in the experience by DMApp components and can be discrete such as images, infographics

or continuous such as live/on-demand audio/video streams.

The Timeline Synchronisation Service enables DMApp components on devices participating in an

experience to synchronise to a source of timing information (a timeline) representing the progress of

the experience. In an intra-location synchronisation scenario, companion devices synchronise their

content playback to a master device e.g. a TV playing a broadcast/IP-delivered stream; all devices

residing on the same network. In this particular context, the experience timeline (also called the

synchronisation timeline) is the timeline of the master device’s content e.g. the timeline of a TV

programme. Provided mappings from the Synchronisation timeline and the DMApp media objects’

timelines are available, the companion devices can synchronise their DMApp components to the

master TV.

In another scenario (inter-location sync), devices at different locations synchronise their content

playback as part of a distributed synchronised experience. In this inter-location synchronisation

configuration, the synchronisation timeline can be one of the following:

1) the timeline of an elected master device,

2) a mutually-agreed timeline, achieved through timing contributions
3
 by independent peers, or

3) a timeline set by a central coordinator e.g. the experience timeline as set by the Timeline Service

3
 Although, it is possible for a mutually-agreed timeline to be achieved independently through consensus by

individual peers through rounds of state update, we refer here to a centralised service that receives timeline

progress updates from all peers and computes a reference timeline position that all peers should adhere to.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 37 of (135)

The Timeline Synchronisation Service provides Synchronisation as a Service (a SaaS) to devices,

allowing them to subscribe to synchronisation-timeline progress updates. Based on these timeline

progress updates, the devices can decide on how to adapt their playback to achieve synchrony.

In particular, a Synchronisation Server (a Timeline Synchronisation Service provider) and a

Synchronisation Client (a service consumer e.g. devices in the experience) have distinct

responsibilities in achieving the synchronised experience.

A Synchronisation Server drives the experience by collecting/distributing timeline updates and making

decisions about the reference timeline position of Synchronisation Clients (SC) after every round of

synchronisation. It essentially performs the same functions as the MSAS (Media Synchronisation

Application Server) component in an HbbTV 2.0 terminal; in fact, in intra-location synchronisation

scenarios, we may assume that the Synchronisation Server is the MSAS.

In more details, the Synchronisation Server performs the following:

 Collects timeline positions
4
 of DMApp components from the individual devices (the

synchronisation clients, SCs)

 Calculates delay differences between the media playout of the synchronisation clients, and

creating Control Timestamps (a reference timestamp) based on this. The Control Timestamp is

usually a position on the Synchronisation Timeline.

 Distributes Control Timestamps to SCs to suggest the timing of presentation that each SC should

align to in order to achieve synchronised timing of presentation across all SCs.

 Optionally receives Correlation Timestamps from the Timeline Service, and uses these to translate

the timeline of the media objects and Control Timestamps.

Synchronisation Clients, on the other hand, perform the following functions:

 Provide periodic timeline updates of their media playout as Actual, Earliest and Latest -

Presentation Timestamps.

o The earliest and latest presentation timestamps represent the time range of the media that

is currently loaded in the player’s buffer

o The timestamps may be converted to positions on the synchronisation timeline

 Receiving control timestamps from the Timeline Synchronisation Service and adapting their

media playout to reflect this changed relationship between their content timeline and the

WallClock.

 Optionally receiving Correlation Timestamps from the Timeline Service, and using these to

translate the timeline of the Control timestamp to its content timeline.

 If performing the master role, provide content identification updates to SCs to inform them about

the content/programme it is playing.

All presentation timestamps reported by Synchronisation Clients are read with respect to a common

time clock; they actually represent a pair of time values read at the same time (time on content

timeline, time of common clock). To this end, all actors in the model share a common time reference

via a shared WallClock
5
. This is achieved by each device maintaining a local WallClock instance

synchronised to a master WallClock using clock synchronisation techniques. An overview of the

WallClock service is given in Annex B.

4
 Actual presentation timestamps, Earliest Presentation Timestamps and Latest Presentation Timestamps from

DMApp components (Synchronisation Clients) are actually sent to the Synchronisation Service

5
 The WallClock is a software clock at each device/service that is kept synchronised to the WallClock instance

on the synchronisation master terminal via time synchronisation schemes (e.g. CSS-WC, NTP, etc).

D2.1 System Architecture

Page 38 of (135) © 2-IMMERSE Consortium 2017

We illustrate the roles of the Synchronisation Service and its clients by presenting an abstract model of

their operation in Figure 6. The Timeline Service, the Timeline Synchronisation Service and its clients

are shown here as abstract components; no assumptions are made as to where they run (on same

devices or on the local network or in the cloud).

Figure 6: Abstract Timeline Sync Model – Sync Client B synchronising to Sync Client A

All presentation timestamps reported by Synchronisation Clients are read w.r.t. to a common time

clock; they actually represent a pair of time values read at the same time (time on content timeline,

time of common clock). To this end, all actors in the model share a common time reference via a

shared WallClock. This is achieved by each device maintaining a local WallClock instance

synchronised to a master WallClock using clock synchronisation techniques. An overview of the

WallClock service is given in Annex B.

In Figure 6, two Synchronisation Clients A and B play distinct video streams StreamA and StreamB

respectively as part of an authored experience (retrieved by the Timeline Service). Sync Client B

needs to synchronise to Sync Client A; Sync Client A is the master device. Both Sync Clients A and B

share a synchronised WallClock with the Timeline Synchronisation Service. The clock

synchronisation is achieved using the WallClock service. Each Sync Client sends timeline updates to

the Timeline Synchronisation Service to indicate the current position on its timeline. The timeline

update contains the Actual Presentation Timestamp, the WallClock time when the Actual Presentation

Timestamp was read and Earliest/Latest available Presentation Timestamp of content being played.

Based on timeline updates from Sync Clients A and B, the Timeline Synchronisation Service can build

an estimate of each client’s content timeline (dotted clock outlines in Timeline Sync Service in Figure

6). Using a correlation (TA, TB) from the Timeline Service, the Timeline Synchronisation Service can

map time values from each timeline to the other. Based on the Actual Presentation Timestamps,

Earliest Presentation Timestamps and Latest Presentation Timestamps from each client, the Timeline

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 39 of (135)

Synchronisation Service suggests a presentation timing for each client. Client B can then adjust its

playback to this new presentation timing.

If the timestamps from B indicate that it may be hard to catch up with A, then the Timeline

Synchronisation Service may instruct client A to decrease its presentation speed by sending it a control

timestamp as well. The Timeline Service itself functions as a Synchronisation Client if it assumes the

role of the synchronisation master (this is outlined in more detail in Annex B).

The Timeline Synchronisation Service provides the following interfaces:

 Enable Synchronisation - establish a timeline synchronisation service instance per experience and

make Timeline Synchronisation interface endpoint known to clients)

 Timeline Synchronisation interface - for master timeline negotiation, timeline update collection/re-

distribution, computed reference time position distribution

 Content Identification & Other Information (for content identifier and service-endpoints

dissemination to clients)

 Rebase Experience Timeline Correlation– (update experience timeline/ WallClock correlations if

post-production latencies are introduced)

Selected Technologies

There are a number of alternative technologies and approaches to achieving media synchronisation,

each delivering different synchronisation accuracy and convergence delays. The following solutions

are favoured candidates to achieving WallClock Synchronisation and Timeline Synchronisation in

both intra-location and inter-location synchronisation configurations. They have been selected for their

synchronisation accuracy and the suitability for both local and distributed deployment configurations.

A local deployment configuration will allow independent instantiations of our platform (e.g. for

demos) and will leverage local-network performance to deliver more accurate synchronisation. Other

reasons are their availability as open standards (obviates tie-ups with proprietary solutions) and the

existence of relatively mature implementations.

Timeline Synchronisation DVB-CSS (HbbTV 2.0 Stack) for intra-location Sync,

cloud-based DVB-CSS variant for inter-location sync

WallClock Synchronisation DVB-CSS WallClock Synchronisation Protocol, W3C Web

Timing API

Content Identification Service DVB-CSS CII protocol

A more detailed explanation of how to achieve both inter- and intra-location synchronisation based on

the technology selections is provided in Media Synchronisation (Annex B). In particular, Annex B

describes how the actors and interactions in our model are mapped into existing DVB-CSS component

roles and protocols.

Available implementations:

 Synchronisation Client on mobile devices: BBC’s iOS Sync Library, IRT’s Android Sync

Library

 Synchronisation Client on desktop browsers: BBC’s JS Sync Library

D2.1 System Architecture

Page 40 of (135) © 2-IMMERSE Consortium 2017

 Timeline Synchronisation Server/Synchronisation Client on TV: BBC’s DVB-CSS TV

Emulator

6.1.7 Content Protection and Licensing

Media content protection is where access (playback and/or download) to media content is limited to

users/accounts which are currently suitably authorised, in such a way that access cannot be easily

propagated to other users, or to the current user once any authorisation has expired or been revoked.

The requirement that access cannot be propagated and is limited to authorised usage imposes

constraints on the authorisation model and additional technical requirements. This is because the end-

user of the media (the person(s) viewing/consuming it) is also an adversary who could otherwise

consume the media data and then replay it to non-authorised users, or consume it by a means that is

not authorised. Policy and technology to implement these restrictions is referred to as Digital Rights

Management (DRM).

Technical mechanisms to do this include:

 Contacting a remote license or key server when media is about to be accessed, to check

whether and how content can be consumed, and/or what keys are required to decrypt it.

 Transport encryption: encryption/protection of data being transmitted against passive or active

snooping.

 Encryption at rest: encryption of data (temporarily) stored in user controlled/owned devices.

 Obfuscation of keys, credentials and/or decryption mechanisms in software.

 Obfuscation of keys, credentials and/or decryption mechanisms in hardware.

 Obfuscation of and/or technical barriers around hardware paths which carry unencrypted

media or key data.

Which mechanisms are used and how is a trade-off between the level of protection required, hardware

availability/requirements, client platform support, technical cost/difficulty, and media distribution

platform. Protection mechanisms implemented in software are simpler to implement and more

portable however offer less protection than hardware-based mechanisms. This is because the level of

competence, cost and difficulty required to read or modify content protection software is orders of

magnitude less than that required to reverse-engineer or modify content protection hardware.

Current commercial hardware platforms for consuming content, including a significant subset of TVs,

tablets and smartphones, and a smaller subset of PC/laptop type devices, include hardware protection

mechanisms. However, development platforms such as might be used to emulate a HbbTV 2.0 TV, are

unlikely to include any hardware support for DRM/protected content playback. Therefore, any media

content to be used in a trial with development devices which needs to be protected, will only be able to

be protected using software-based mechanisms. The mechanism by which content is protected would

need to be agreed with the relevant rights holders/owners and may limit the choice of what content to

use.

Possible content protection types which could be used in a trial using development devices include:

1. No encryption at all, only authorisation.

This is probably insufficient, as it is vulnerable to trivial snooping.

This does not require a content protection service.

2. Transport encryption (TLS) with authorisation.

This may be sufficient as it prevents trivial recovery of the media by snooping.

However this requires that the media distribution platform (typically a CDN) implement

validation of authorisation credentials and TLS for media download. This is unlikely to scale

well or be compatible with current media CDN platforms.

This requires that the media distribution platform uses the identity management and

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 41 of (135)

authentication service for access control, but does not otherwise require a content protection

specific service.

3. Encryption of media data, with keys stored within an unencrypted part of the media data.

This imposes a slight inconvenience on an attacker, who would be able to decrypt all items of

protected content even if not originally authorised.

A standardised implementation of this is using ClearKey with MPEG-DASH CENC.

This does not require a content protection service.

4. Encryption of media data, with pre-shared key(s).

An attacker who extracted the pre-shared key(s) from the executable would be able to decrypt

past and future items of protected content, even if not currently authorised.

This does not require a content protection service.

5. Encryption of media data, with key(s) retrieved separately using transport encryption and

authorisation.

This is the mechanism used for protected BT Sport HLS content on tablets/smartphones, see

section 9.5.1.6.

An attacker would need to be authorised, to extract the key(s) used to decrypt the content, and

these key(s) would not allow decryption of other items of content.

In the case of BT Sport HLS, a key server is contacted for each individual segment (10s chunk

of media) during playback. This imposes scalability requirements on any key server

implementation used in a trial. These scalability requirements could be reduced by sharing

keys between multiple media segments, or by using the same key for the entirety of the item

of content.

This requires a content protection service, which acts as a key server and uses the identity

management and authentication service to validate user credentials.

Of the possible content types listed above, only type 5 requires the addition of a specific service for

content protection. This service would act as a key server.

Selected Technologies

MPEG-DASH CENC is a standardised mechanism to encrypt fragmented MP4 media files as used in

MPEG-DASH using a common key(s), and optionally include proprietary metadata for one or more

DRM schemes to be able to independently decrypt the content. This could be used as the media format

for options 3 to 5 above, optionally including a proprietary marker to label any choice of scheme in

options 4 and 5.

In a production system where protected content does not need to be consumed on development devices

without hardware support for protected content, MPEG-DASH CENC could be used with one or

hardware-based commercial DRM systems. Commonly used examples include: PlayReady, Marlin,

Widevine, FairPlay and Adobe.

6.1.8 Identity Management and Authentication

Components of the system including the lobby, social/communications functionality and access

control for media content may require that users (individual persons or groups of persons) can be

identified as being associated with an account. Users could be invited to create an account and enter

their identity details and credentials to authorise access to that account, at first use, or in the case of a

trial, may be allocated an account in advance.

D2.1 System Architecture

Page 42 of (135) © 2-IMMERSE Consortium 2017

Authentication is used within the architecture for:

 An entity to prove its identity to other entities by proving that it has the required authorisation

credentials.

 An entity to be authorised or unauthorised to access user data, media content, services, or

perform other actions.

 An entity to assign or revoke authorisation credentials to/from an entity.

The authentication architecture contains a number of entity types:

 Users (individual persons or groups of persons)

 Accounts

 Client devices

 Client applications

 2-IMMERSE platforms

 3
rd

 party platforms

Possible authentication scenarios include:

1. A user signs into an account using a client application. Authorisation for that account is stored

on the client device for future use by that client application.

2. A user returns to a client application that they have previously authorised to access an account,

the client application signs into the account without requiring any credentials to be input.

3. A user revokes authorisation credentials previously assigned to a client device and/or client

application.

4. A user creates, deletes, accesses or modifies an account. The authentication model may require

that some operations such as these are privileged and require inputting credentials again or

inputting separate credentials, which are not then stored on the client device.

5. A user creates, deletes or modifies a subsidiary account associated with a primary account. The

subsidiary account may share some subset of the capabilities or access rights of the primary

account. This may be useful for child accounts with some form of parental access limitations,

for example.

6. Account identity and/or credentials for a 3
rd

 party platform are associated with an account on a

2-IMMERSE platform, or vice versa.

7. A 3
rd

 party platform accesses or modifies an account or associated data on a 2-IMMERSE

platform, or vice versa.

8. A user uses a client application/device to play an item of protected media content.

Authorisation may involve authorisation/communication with platforms and/or may require

that the user, account, client application and/or client device is identified/authorised.

9. A user uses a client application to connect to or control another client device. This may require

that the user input suitable credentials, if not already stored on the client device, and/or that the

user performs a confirmation on the device being connected to or controlled. This may vary

depending on the locations of the devices, for example less authentication may be required if

both devices are present on the same LAN.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 43 of (135)

10. A user uses a client device to create, delete or join a limited-access shared group which

requires credentials to access. A possible example of this is a protected chat where only

persons who have been given credentials out of band are permitted to join.

11. A client application or client device securely connects to a platform (2-IMMERSE or

otherwise) and each verifies and/or authenticates that the other end of the connection is the

(type of) entity which is expected.

12. A client application or client device downloads a software update. Platforms such as iOS and

Android already have a comprehensive framework for this, but on other platforms if secured

updates are required it may be necessary to use a secured connection (typically TLS) and/or to

use signed update packages.

OAuth is an authentication framework which could be used for authenticating client

devices/applications. OAuth is a standardised general framework for authentication using tokens. It

includes support for varying access types on a per-token basis and authentication flows such as

entering the username and password on a different application or device than the application to be

authorised. (See Section 9.5, Authentication and Security).

Authentication that the other end of a network connection is the (type of) entity which is expected can

be done using certificates, typically using TLS.

3
rd

 party platforms which client applications/devices and/or 2-IMMERSE platforms may require

authentication to interact with might include:

 BT (BT Sport), for access to sports media content/data.

 Dorna, if access to MotoGP data or media content is not routed via BT.

 Pub-specific platforms, either within the pub premises or a pub-specific remote service.

 Theatre-specific platforms.

 Education-specific platforms.

 Social media platforms, if client applications or a 2-IMMERSE platform are to interact on social

media on a user’s behalf.

 VOIP/real-time comms platforms.

BT authentication appears to be SAML (Security Association Markup Language) based, however this

does not require any other parts of the system to also use this authentication data format.

Authentication and management of user credentials, and generation of authentication tokens, for all

parts of the 2-IMMERSE platform is encapsulated within a single identity management and

authentication service. This allows Single Sign On (SSO) within the 2-IMMERSE platform. Users use

the same account and credentials to access all parts of the platform (subject to user/account

entitlements).

The particular identity and authentication functionality required is likely to be specific to the user-

stories of each prototype service trial, however these different scenarios will be implemented by

means of a single authentication service which provides identity and credential management

functionality common to all use cases.

D2.1 System Architecture

Page 44 of (135) © 2-IMMERSE Consortium 2017

6.1.9 Session (Lobby) and Call Services

The session (lobby) service allows peers to join a named group to discover and communicate with

each other. It acts as an introductory service based on people’s names as opposed to IP addresses.

Peers can join and leave the lobby at any time and everyone in the lobby is notified when this happens.

It’s possible to join more than one lobby concurrently. The lobby doesn’t exist in any form prior to the

first peer joining and ceases to exist after the last peer has left. It is possible to request a list of the

peers that are in the lobby. This is useful for late joiners who have missed all prior join notifications.

6.1.9.1 Broadcasting

The lobby service can broadcast user-defined messages on behalf of a peer to all other peers in the

lobby. This is useful for signalling changes in the state of a shared experience and to synchronise

actions amongst the peers without having to establish separate peer-to-peer connections. An example

would be an application-defined message instructing each peer to begin playing a media stream.

6.1.9.2 Meta-data

Meta-data can be passed to the lobby when a peer joins, but the lobby service does not impose a

schema on it. For example, the data can describe a person’s name or the data can be application

defined. This meta-data is automatically distributed to all peers via join notifications.

6.1.9.3 Signalling

The lobby service implements signalling for WebRTC applications via WebSockets and XHR.

Signalling allows initiation of peer-to-peer sessions by exchanging control messages that initialise or

close communication and report errors. Peers can use the lobby’s signalling mechanism to exchange

ICE candidates obtained from STUN/TURN servers. ICE candidates are the public IP addresses and

ports that peers should use to communicate with each other and are the result of establishing NAT

punch-through or relay. Signalling is also used to negotiate codecs, video resolutions and

communication protocols via Session Description Protocol (SDP). Transport type can also be

negotiated as reliable (TCP-like) or unreliable (UDP-like).

Once signalling is complete, peers can chat directly with one another using real-time video, audio and

text messages, courtesy of WebRTC. Peers can also exchange arbitrary binary payloads using

application-defined protocols.

6.1.9.4 Hosting

The lobby service is cloud hosted and uses secure web sockets and HTTPS XHR to communicate with

peers. It leverages WebRTC’s security for peer-to-peer communications.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 45 of (135)

6.1.9.5 Lobby Architecture Overview

Figure 7: Lobby Architecture

6.1.9.6 Selected Technologies

 Telepresence: WebRTC

 Adapter.js: A WebRTC adapter shim (https://github.com/webrtc/adapter)

 Peer.js: Call service (http://peerjs.com/)

 PeerServer: A server for PeerJS (https://github.com/peers/peerjs-server)

6.1.10 Logging

The logging service provides a consistent mechanism for monitoring all aspects of system activity

which developers and producers consider to be important (see discussion in Section 7.7, Testing,

Monitoring and Analytics).

Activities to be logged may include:

 User interactions with all devices in the client environment for the duration of a production

session.

 Interactions between components in the production environment (such as video servers,

metadata and graphics feeds).

 Interactions between devices in the client environment to discover and launch apps, and to

synchronise media objects between devices.

https://github.com/webrtc/adapter
http://peerjs.com/
https://github.com/peers/peerjs-server

D2.1 System Architecture

Page 46 of (135) © 2-IMMERSE Consortium 2017

 The request and delivery of media objects and streams.

 The transfer of layout information from the Layout Service to either a cloud compositor or

devices in the client environment.

 The authentication of users and client devices whenever this is required by application logic.

 Communication sessions set up between client devices in different locations, mediated by the

Lobby.

For the purposes of 2-IMMERSE trials, the scope of a consistent set of logs will be restricted to a

production session, which refers to the up-time of the prototype 2-IMMERSE platform during an

individual trial event, such as a theatre play, MotoGP race or football match. The logging service must

be started before all other services and will be the last service to be shut down. It may also be started

independently of a production session to enable developers and producers to read and analyse log data.

The logging service will operate on the following principles:

 Logs are created by the majority of other system components, which are each responsible for

transmitting their logs to the logging service.

 The logging service acts as a log aggregator to ingest, store and index log data. It will provide

ingested log data to the analytics service, which can be used to present and analyse its data.

 All components which create logs should use a Wall Clock service which is synchronised with

the Sync Service as their reference for log timestamps to ensure that ordering is correctly

preserved by the log service.

 If logs are aggregated from external ‘black box’ components, they should be annotated

appropriately if synchronised clocks cannot be guaranteed.

 Log transactions should not noticeably impact the performance of the originating component

and should be executed as soon as possible after event being logged.

 For simplicity and reliability, logs will be made available to the server during every production

session using one of two methods:

o Instantaneous transmission: Critical log data is transmitted to the log server at the

time the logged event takes place. This should be restricted to essential data and

meeting real-time system monitoring requirements - such as reporting errors,

understanding system load and key success criteria during the experience (e.g. have

all the users logged in?).

o Store and forward: Non-critical log data will be stored locally by the component or

service creating the log. This data must then be uploaded to the log server in a one-

time transaction before the component or service terminates. Non-volatile local

storage will be used where available to reduce the risk of the stored log data being lost

if the component or service running on it crashes.

 Given the relatively short length of a production session, these two options provide a pragmatic

approach which should remove the complexity of joining incremental batches of log events and

also the risk of losing critical log data in the event of an individual component or service failure.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 47 of (135)

6.1.10.1 Selected Technologies

There are a wide variety of log analysis tools available, but the following three options seem to be the

most appropriate candidates for the 2-IMMERSE logging service:

 Logstash and Elasticsearch, both components from the Elastic Stack

(https://www.elastic.co/products). Logstash provides a flexible, open source data collection

pipeline, while Elasticsearch provides storage, plus indexing and analytics functions.

 Splunk Light (http://www.splunk.com/en_us/products/splunk-light.html) provides log search

and analysis for small IT environments and is available free of charge if it indexes less than

20GB of logs per day.

 A DIY solution: Given the relatively small volumes of data involved per production session, it

may just be sufficient to write a simple log server which aggregates atomic events delivered via

HTTP transactions into a database. Log files stored by other components or services could then

be manually combined after the event.

6.1.11 Analytics

The Analytics service is likely to be of greatest value as an offline service – i.e. to be used for post-hoc

analysis of data collected and aggregated by the logging service during a production session. It is

feasible that developers or producers might make limited use of analytics during an event, but in a

field trial environment this is likely to consist of simple queries to confirm the correct operation of the

system, perhaps presented as a live graphical ‘dashboard’.

The following table lists a potential set of usage scenarios for the analytics service:

Usage Scenario Live Offline

Measuring system performance by comparing aggregated logs and

calculating latencies and throughputs.
Yes Yes

Extracting basic statistics about the audience for a particular

production session, including details of their home environment and

the group dynamics of those participating in the experience.

Yes Yes

Pattern mining user behaviour sequences, perhaps comparing against

stereotypes estimated by authors. This could indicate:

how behaviour differed from what was expected

which parts of the experience were most and least popular

when users were confused or frustrated with an experience

 Yes

Examining the impact of system errors and degraded performance on

user behaviour.
 Yes

Evaluating whether companion devices increased user engagement

with the experience, and which combinations were most effective at

doing so.

 Yes

Table 2 -Usage scenarios for the analytics service

https://www.elastic.co/products
http://www.splunk.com/en_us/products/splunk-light.html

D2.1 System Architecture

Page 48 of (135) © 2-IMMERSE Consortium 2017

6.1.11.1 Selected Technologies

As described in Section 7.7: Testing, Monitoring and Analytics, there is a massive choice of tools

available for data analytics. While the volumes of data generated by a production session will not be

very large by modern standards, they can still take advantage of tools designed for analytics at scale.

The following are likely candidates, and in principle any or all of these could be used for offline

analytics given that there are no dependencies with the rest of the system beyond access to data stored

by the log server.

1. Kibana from the Elastic Stack (https://www.elastic.co/products) is an open source analytics

and visualisation platform designed to connect directly to Elasticsearch.

2. R Studio and Shiny (https://www.rstudio.com). R Studio is a popular open source

development environment for the powerful statistical language, R. Shiny is a web framework

for building interactive visualisations (such as dashboards) using R.

3. Tableau (http://www.tableau.com/products/desktop) is a paid-for visual analytics tool which

supports complex visual analytics on local or remote data sources.

4. RapidMiner (https://rapidminer.com/) is an open source and paid-for predictive analytics

platform which offers a graphical plug-and-play approach to the implementation of machine

learning techniques.

6.1.12 Origin Server / CDN

In our architecture we assume the availability of a CDN to efficiently serve media objects and DMApp

Components to client devices. The CDN shall contain an origin server operating as the source of truth

for all content and shall be capable of serving all the content available on the CDN. As the

geographical spread of consuming clients increases in distance from the origin server, the CDN should

utilise edge servers to minimise the physical distance required to deliver content to clients. Standard

CDNs use the DNS resolver’s IP address to perform a geographic lookup to select a delivery server

(origin or edge) closest to the client. An edge server selection policy based upon closest geography

positioning offers the best delivery performance.

It is assumed that delivery performance takes priority within the server selection algorithm for 2-

IMMERSE, combining both geographical distance and load balancing factors to maximise

performance. This is preferred to other policies which may factor the value of specific content and

distribute availability across the CDN based upon relative hosting costs.

The complexity of the CDN can evolve with the size of the 2-IMMERSE client population size and

geographic spread. In the early PoC phases, it may well be sufficient to minimise costs and host a

CDN containing just the origin server. Although, it is assumed that contributing partners to the 2-

IMMERSE project already operate CDNs to deliver content to connected devices (i.e. OTT video

delivery to companion devices). We should be considering leveraging these based upon availability

and costs.

Interfaces

The CDN should be addressed through a domain name used in specific content URLs resolvable

through the CDN web-service APIs accessed by the client. The selection of the delivery server (origin

or edge) within the CDN is performed as part of the DNS resolution process.

The origin server will host an API to manage content hosted as the source of truth within the CDN.

https://www.elastic.co/products
https://www.rstudio.com/
http://www.tableau.com/products/desktop
https://rapidminer.com/

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 49 of (135)

The edge server instances will host an API for configuration of the content caching policies adopted as

part of its role within the CDN.

It is assumed that these management APIs will be hosted by a web service.

6.1.13 TV Platform

In our architecture we assume the availability of a TV platform that can support linear and on-demand

AV distribution. Linear distribution could include DVB Terrestrial / Satellite, IP Multicast, or OTT

live streams (e.g. HLS or DASH). For on-demand distribution we assume OTT (e.g. HLS or DASH).

The TV platform is expected to provide the following services as required to support AV distribution

of the primary content for consumption on client devices (STB, Smart TV, Companion Devices):

 Control plane (catalogue, identity, offer, security, recommendations, messaging, etc.)

 Data plane (origination, acquisition, distribution)

Data Plane

The acquisition, origination and distribution of the AV assets played out as part of the TV platform’s

linear or VOD services. Origin AV assets are ingested, stored, encoded, transcoded, packaged and

distributed within a media preparation process required by TV platform’s delivery networks (i.e.

Satellite, Terrestrial, Cable, OTT IP ABR).

The consuming clients have been integrated to interface with the AV delivery network, this integration

ranges from middleware stacks operating in dedicated STBs through to applications running on

agnostic connected devices such as SmartTVs and companion devices.

Control Plane

The components providing the user experience services required to consume the TV platform’s linear

or VOD services. The following shortlists relevant components for a typical Pay-TV platform:

 User Management: Operated within Pay-TV platforms, used to manage subscription accounts,

profiles and identity. 2-IMMERSE elements (such as the Identity Management and

Authentication Service) may need to interface with an existing user management service to

facilitate unified identity and single sign-in experience for users.

 Security: Operated within Pay-TV platforms, used to control access to channels/content based

upon subscription entitlements. Interfacing with the TV platform security service maybe

required when providing 2-IMMERSE experiences which use protected media.

 Catalogue Management: Ingesting, storing, indexing and distributing content metadata, used in

client UIs to present EPGs. Interfacing with the Catalogue management service maybe required

to map 2-IMMERSE media objects with the TV platform catalogue entities.

Interfaces to the TV Platform control plane are expected to be proprietary and require a custom

integration layer.

Selected Technologies

For the purposes of our trial platforms, the project is likely to adopt a simpler TV platform from both a

data and control plane perspective, since we will be developing our own emulated HbbTV device /

stack. For the data plane we are likely to restrict linear distribution to OTT live or on-demand streams

in order to simplify the emulated HbbTV device / stack.

D2.1 System Architecture

Page 50 of (135) © 2-IMMERSE Consortium 2017

7 Production Architecture

A detailed, generalised production architecture is difficult to create, since we are looking to extend

existing production workflows and these existing workflows for the different trial scenarios are

already quite different. There is however commonality in what needs to be created through the

production process and delivered to the platform.

In this section we will describe in general terms the content and data flows from the production

process to the platform. We will then describe the existing production workflows for each of the

scenarios, and note what additional content and data flows will be needed to support the scenario as

defined in D4.1 (noting that the various scenarios are described with varying levels of detail, reflecting

the scenario maturity). Finally we cover the topic of Testing, Monitoring and Analytics.

There are likely to be a number of ‘production services’ required to deliver the additional content and

data flows e.g. moderation / conformance, info-graphics generation, push notifications (triggers) etc.,

however at this stage it is difficult to define these and we will define them on trial-specific basis.

7.1 Production Content and Data Flows

7.1.1 Timeline Description

The timeline description describes the changing availability of media objects and DMApp

Components that comprise an experience over the duration of that experience.

The format / syntax of this data is to be specified, but will likely be defined as JSON or XML.

7.1.2 Layout Requirements

The layout requirements specify a priority for each media object/DMApp component, and, for each

media object/DMApp component layout constraints such as:

 min/max size

 audio capability

 interaction support

 and, whether the user can over-ride these constraints.

Some of these constraints may be expressed relative to other components (priority, position etc.).

The format / syntax of this data is to be specified, but will likely be defined as JSON or XML.

7.1.3 Media Objects

The set of media streams or assets that comprise an experience. These includes typical programme

elements (main audio/video, audio description, subtitles etc.), but would also include the constituent

elements that are composited / and mixed to create these programme elements, such as clean feeds,

audio commentary, auxiliary camera feeds, metadata feeds, images, graphics, A/V clips (e.g.

highlights / replays).

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 51 of (135)

7.1.4 DMApp Components

As described in section 5.2.1: Web Applications and Reusable Components, DMApp components are

reusable components written using HTML5, CSS3 and JavaScript.

7.1.5 Native Companion Applications

As described in section 5.2.2: Host Application, these are native host applications for the common 2-

IMMERSE run time web application and DMApp components, which will likely be developed using a

wrapper technology such as Cordova or Titanium.

7.1.6 HbbTV Applications

As described in section 5.2.1: Web Applications and Reusable Components, HbbTV Applications are

web applications written using HTML5, CSS3 and JavaScript.

7.1.7 Live Trigger Events

For live productions, live trigger events will be created to trigger presentation changes in the

immersive experience (these triggers could change the set of DMApp components being presented, or

could trigger a change of presentation within a DMApp component). These trigger events are received

by the Timeline Service.

7.2 Prototype Service 1 – Watching Theatre at home

7.2.1 Existing Workflow

Six Sony 4K HDC 4300 cameras, which are located in the auditorium and are controlled by human

operators, provide continuous live image feeds along rigged cables to a nearby OB4K unit operating

with a XAVC Intra codec. Two of the cameras are on fixed pedestals and three others are mounted on

dollies which run on short tracks in areas within the auditorium from which seats have been removed.

The framings, lens adjustments and camera moves for each of these cameras have been scripted in

advance by the screen director and rehearsed during two earlier camera rehearsals. Both the live mix

of these rehearsals and the outputs of each camera have been recorded, composited into a single feed

with a main image of the mix and the individual feeds arrayed around this in a “L” configuration. This

composite is studied by the screen director and the camera and sound teams to refine the camera script

before the live performance.

During the performance the operators receive additional instructions and communicate with the screen

director and script supervisor who, with the vision mixer, are monitoring the live feeds and selecting

moment by moment, and broadly in accordance with the camera script (but with occasional

improvised variations), the shots in the master ‘mixed' feed. As the image feeds are coming into the

scanner they are being monitored by engineers and balanced for to ensure consistency of colour and

intensity from shot to shot.

Two additional Sony 4K HDC 4300 cameras are dedicated to providing shots of the host and

interviewees before the performance begins and during the interval.

In parallel with the image feeds is the live mixing of a 5.1 surround audio track created, again in

accordance with a previously created script that has been tested during two rehearsals, from up to 156

separate feeds from inside the theatre. These feeds come from individual radio mics mounted in the

wigs or costumes of each of the actors, from mics placed in the band room where the music is played

live by up to 8 musicians, from mics hung in the auditorium to pick up audience response, and also

D2.1 System Architecture

Page 52 of (135) © 2-IMMERSE Consortium 2017

from pre-recorded special effects and music. The synchronous 5.1 audio mix is fed to the scanner

where it is married with the image track before output to the satellite uplink.

Live English subtitles are created, using pre-set files, are also inserted into the signal on a separate

channel so that the cinemas taking it via a downlink can opt to include these in the projection or not.

Only a small number of European cinemas take advantage of this option.

Three Sony PWS 4500 media streamers, with a total of 8TB internal storage, are used both to play out

short pre-recorded elements that are used as context and marketing before the performance and during

the interval. These machines also record the master feed and audio, as well as continuous feeds from

three of the performances cameras. These ‘isolated’ feeds are used to provide alternative shots and

editing coverage during the small adjustments made between the live presentation and the release of a

final recording for DCP mastering, DVD production and potential broadcast and other exploitation.

Throughout this process there is a system of private audio channels in operation connecting, variously,

the team in the scanner, the sound crew (including two radio mic operators in the auditorium), the

camera operators and the stage management team who are running the show, including giving audio

cues for lighting, sound and automation changes.

The married image mix and 5.1 audio is delayed by 65 seconds in an EVS machine (this is so that the

production can be classified as a “film” for purposes of UK tax relief funding; there is no intention of

intervening in the feed in any way) and then output to a satellite uplink truck which transmits the

signal to three channels across two satellites: Intelsat 10-02 (used for download by most UK cinemas,

Picturehouse and Cineworld cinemas, and used by most of the European cinemas who take a live

feed), and Intelsat 905 (used by most of the multiplex theatres in the UK as well as some UK

independents). The cinemas take the feeds by their local downlinks, using dishes mounted on their

roofs, and use their in-theatre digital projection systems to present the feed on their screens.

After the live performance, on subsequent days, some ‘tidying-up’ work is done to both image and

sound, including some additional grading, before a DCP (digital cinema package) master file is

created, from which DCPs are made for courier distribution to cinemas abroad where the production

will be shown “as live” on dates up to two months later. This DCP master file is also distributed via an

Aspera link so that duplication facilities in some countries can create DCPs locally.

This “tidied-up” file is also the one used for DVD and Blu-ray mastering and for further down-stream

exploitation, as well as for archiving by the theatre company. Some of the rehearsal material and

certain of the “iso” feeds are also archived.

7.2.2 Additional Content and Data Flows

The additional content and data flows identified through the user stories in Annex A are as follows:

 Relevant text, image, audio and video resources about the play, the production, the cast and

crew (Introductory, Informed or Expert levels)

 Synchronised information and commentary in the form of image and text (Introductory,

Informed or Expert levels)

 Static wide shot of the stage

 Live and interactive 360-degree video and audio from the foyer (TBD)

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 53 of (135)

7.3 Prototype Service 2 – Theatre in School

7.3.1 Existing Workflow

This will be the same production workflow that has been developed to support Prototype Service 1 –

Watching Theatre at Home.

7.3.2 Additional Content and Data Flows

This is still to be determined but is likely to be additional elements to support teaching and the

educational context of this Prototype Service. It may also require the presentation of the content in an

episodic fashion; since it is unlikely the entire play will be consumed in a single session due to school

timetabling (amongst other constraints).

7.4 Prototype Service 3 – MotoGP at home

7.4.1 Existing Workflow

The trial will use the available video and data feeds provided through the existing MotoGP rights deal

agreed with BT Sport. These rights include access to 9 live video feeds; clips and highlights of

qualifying session and races; real time data (timing, track positions and circuit maps and rider

standings); and editorial content, such as news stories, picture galleries and social interaction with the

riders, teams BT Sport presentation and commentary teams.

Content type Content description

Video Live video streams of each MotoGP, Moto2 and Moto3 qualifying session

and race, including:

 Live BT Sport programming

 Feed 1: On Board Camera 1

 Feed 2: On Board Camera 2

 Feed 3: On Board Camera 3

 Feed 4: On Board Camera 4

 Feed 5: Helicopter Feed (race day only)

 Feed 6: Live Timing

 Feed 7: Live Tracking

 Feed 8: Highlights/Clips

On demand replays

(geo-blocked to UK)

Provision of full replays of MotoGP, Moto2 and Moto3 qualifying sessions

and races.

Clips

(geo-blocked to the UK)

Access to clips and highlights of each MotoGP, Moto2 and Moto3 qualifying

session and races.

Real-time Data Timing

 Tracking visualized on circuit maps.

 Rider standings.

Editorial News stories.

 Pictures galleries.

 Social interaction with riders, teams, BT Sport presentation and

commentary team.

D2.1 System Architecture

Page 54 of (135) © 2-IMMERSE Consortium 2017

7.4.2 Additional Content and Data Flows

Production requirements for the 2017 trial will be agreed with Dorna, BT Sport and North One

Production during the course of this year. We will further develop relationships with these

stakeholders at the Silverstone MotoGP race in early September 2016. This will also enable the project

team to further develop our understanding of current production workflows.

A range of options being considered for the MotoGP trial are outlined in D4.1.

7.5 Prototype Service 4 – Watching Football in a Pub

7.5.1 Existing Workflow

The trial will use the available video and data feeds provided through the existing FA Cup rights deal

agreed with BT Sport. These rights include live video coverage of matches, pre-match, in-play and

post-match data feeds (including match events and team and player performance data); and editorial

content, such as news stories, picture galleries and social interaction with the managers, players and

broadcast team.

Content type Content description

Video Live ‘dirty’ video feed via DTT delivery on SKY Platform to BT Sport Business

subscribers

 Live BT Sport programming

 Additional L Bar overlay option

Clips Access to in-game selected* highlight clips via:

 BBC & BT Sport Websites

 BBC & BT Sport Mobile Apps.

 BBC & BT Sport social media accounts.

*Exact media rights restrictions TBC via BT Sport.

Real-time Data BT Sport & BBC* receive the following football xml feeds from Opta to power a range

of live production and digital services:

 F1 – Fixtures & Results (non-live)

 F2 – Match Preview (form, head to head etc.)

 F3 – Standings (live league tables)

 F7 – key match events/stats (goals, sub, cards)

 F9- Live detailed match stats (full player and team stats)

 F13 – Automated text commentary

 F24 –Live detailed positional stats (used for touchmaps, average formation

graphics etc.)

 F25 – EVS compatible log feeds

 F26 – Live scores

 F30 – Cumulative season statistics (team and player)

 F40 – Squads

 F50 – Live event alerts

 Penalty Data – penalty history by player for BT Sport’s live Premier League

matches (xls

 format).

*Based on BT Sport Opta Agreement 2015/16, no visibility of BBC Opta agreement.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 55 of (135)

Content type Content description

Editorial News stories.

 Pictures galleries.

 Social interaction with players, managers, BT Sport presentation and commentary

team.

7.5.2 Additional Content and Data Flows

Production requirements for the 2018 trial will be agreed with BT Sport production, BT Sport

Business and additional stakeholders during 2017. We are currently developing relationships with

these stakeholders on both production (FA Cup Final 2016) and commercial (Pub of the Future)

drivers for developing a collaborative customer showcase environment at the BT Production Hub. This

will also enable the project team to further develop our understanding of current stakeholder

production workflows and commercial drivers.

A range of options being considered for the Football in Pubs trial are outlined in D4.1

7.6 Media formats used by 2-IMMERSE Production Associates

The following section provides the specifications of the media formats used by 2-IMMERSE

production associates, and hence indicates the formats in which content is likely to be received for use

in 2-IMMERSE trials and demonstrations.

Disclaimer: The information below may be incomplete and is subject to change. Details should be

checked before implementation of each trial or demo.

7.6.1 BT Sport HD Production
6

 File-based Live

Picture format 1920 x 1080

50 interlaced fields per second

1920 x 1080

(16:9 aspect ratio)

25 frames per second, delivered as 50

interlaced fields per second.

Container/Interface MXF OP1a file conforming to

AMWA specification AS-11

v1.1.

The AS-11 file must use the

‘UK DPP shim specifications’

that describe exactly

how the file must be constructed

to meet DPP requirements.

Preferred: 1.485 Gb/s HD-SDI

connection, SMPTE 292M

SD-SDI alternatives exist using

compression.

6
 Reference: DPP (Digital Production Partnership) Technical Delivery Standards for BT Sport (BT Sport 4.0,

15/10/2013) http://dpp-assets.s3.amazonaws.com/wp-content/uploads/specs/bt/

TechnicalDeliveryStandardsBTSport.pdf

http://dpp-assets.s3.amazonaws.com/wp-content/uploads/specs/bt/%20TechnicalDeliveryStandardsBTSport.pdf
http://dpp-assets.s3.amazonaws.com/wp-content/uploads/specs/bt/%20TechnicalDeliveryStandardsBTSport.pdf

D2.1 System Architecture

Page 56 of (135) © 2-IMMERSE Consortium 2017

 File-based Live

Video Compression AVC Intra codec - 100Mbps

High 4:2:2 Intra Profile, Level

4.1

Preferred: None.

Alternatives include:

JPEG2000 - 140 Mbps

H.264/MPEG-4 Part 10 AVC, Long GOP

4:2:2 – 45 Mbps

H.262/MPEG-2 Part 2, Long GOP, 4:2:2

– 60 Mbps

Audio Compression PCM 48kHz/24bit sampled

Uncompressed

4 or 16 tracks

48kHz/24bit sampled

Stereo mixed programme on tracks 1&2

(uncompressed)

Stereo international sound on tracks 3&4

(uncompressed)

Surround mix Dolby E encoded on tracks

5&6

Surround international Dolby E encoded

on tracks 7&8

Table 3 -BT Sport HD Delivery Standards

7.6.2 BT Sport UHD Production
7

 File-based Live

Picture format 3840 x 2160

50 frames per second progressive

To be confirmed

Container/Interface MXF OP1a file conforming to AMWA

specification AS-11 X1.

To be confirmed

Video Compression Sony XAVC 4K profile (Long GOP) – 300Mbps

4:2:0/8bit colour

To be confirmed

Audio Compression AES3 48kHz/24bit sampled

Uncompressed

Must include both stereo and 5.1 sound tracks.

To be confirmed

Table 4 - BT Sport UHD Delivery Standards

7
 Reference: DPP (Digital Production Partnership) Technical Delivery Standards Supplement for Delivery of UHD

Programmes (UK 1.0, 26/1/2016)

http://dpp-assets.s3.amazonaws.com/wp-content/uploads/2016/01/TechnicalDeliverySupplementUHDDPP.pdf

http://dpp-assets.s3.amazonaws.com/wp-content/uploads/2016/01/TechnicalDeliverySupplementUHDDPP.pdf

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 57 of (135)

7.6.3 BT Sport Delivery

Linear broadcast content is delivered to the Set-Top Box via IP multicast. The content is encrypted

and requires hardware support to decrypt, and hence 2-IMMERSE will not be able to make use of

these streams.

Linear broadcast content is delivered to the BT Sport App via HTTP adaptive streaming using both the

HLS and Smooth Streaming formats. These are also encrypted, but decryption does not require

hardware support and hence 2-IMMERSE clients would be able to consume them.

 BT Sport App (iOS, Android and Web)

Picture formats 480 x 270p 200.0 Kbit/s

480 x 270p 400.0 Kbit/s

640 x 360p 600.0 Kbit/s

640 x 360p 1.2 Mbit/s

960 x 540p 1.8 Mbit/s

960 x 540p 2.4 Mbit/s

1280 x 720p 3.5 Mbit/s

25 frames per second

Container HLS (MPEG-2 TS) and Smooth Streaming (fragmented MP4)

Video Compression H.264/MPEG-4 Part 10 AVC (Constrained baseline, main or high

profile, depending on rate).

Audio Compression AAC (HE-AAC) 48kHz sampled

2-channel (stereo)

94 kb/s

Table 5 - BT Sport Adaptive Streaming Delivery

7.6.4 Royal Shakespeare Company Delivery

 File-based

Picture format 3840 x 2160

50 frames per second progressive

Container/Interface MXF OP-1a

Video Compression Sony XAVC

Audio Compression Uncompressed 5.1

Table 6 - RSC Delivery Formats

D2.1 System Architecture

Page 58 of (135) © 2-IMMERSE Consortium 2017

7.7 Testing, Monitoring and Analytics

7.7.1 Overview

As for Distributed Media Applications, this is a broad area and one that represents new ground in the

context of object-based media production for multi-screen experiences. We acknowledge that testing,

monitoring and analytics are already well-known disciplines in the context of traditional TV

programme production and software application development, for example, and an overview of these

is given in Testing and Validation. However, for multi-screen experiences new challenges exist:

 Testing: A key objective of 2-IMMERSE is to develop experiences whose presentation is

flexible across single or multiple screens in response to the devices available and the

preferences of audience members. At the authoring stage, creative professionals will need to test

how their production adapts to different audience scenarios. By sampling a variety of scenarios,

they will need to gain confidence that the experience will deliver a consistent quality even

though they will never be able to test every permutation themselves. Equally important will be

to test the transition between different scenarios and the balance between automated changes

and user interactions. Furthermore, scalability testing could attempt to predict, using typical

audience profiles, resource demands (such as network bandwidth and client/server processing)

over time during an experience.

This definition of testing is not synonymous with carrying out trials with real audiences: it is

more about providing professionals with the tools they need to iterate their designs, although

this could potentially extend to user focus groups.

 Monitoring: IPTV service monitoring today is largely focused upon atomic events at the client

side, such as accessing a linear channel or playing a piece of VOD content, and metrics

aggregated from across the delivery chain, such as the number of concurrent streams through a

network pipe, or the number of errors of different types recorded over a period of time.

However, we believe that creative professionals may additionally need to monitor the precise

way in which audiences are consuming their experiences. This monitoring could be driven by

event logs transmitted live by distributed media applications that allow audience members’

journeys through an experience to be recorded. These logs would complement existing data

relating to server loading or content delivery errors, for example, and over time could be used to

anticipate behaviour and hence make more effective use of end-to-end resources.

 Analytics: The growth of Data Science as a discipline and a burgeoning range of tools to

support data processing and analytics means that many content service providers are increasing

the amount of analysis they perform on data captured by their platforms. 2-IMMERSE multi-

screen experiences will enable highly-granular data to be captured, including how the audience

is composed, how devices are used in the home environment and how audience attention

changes during an event. By monitoring a fully-integrated multi-screen environment for the first

time, this data is likely to provide a much fuller picture than that available from most existing

platforms, and as such there is great potential for analytics tools to derive new insights after the

event. Analysis may also be required to support live monitoring to help the delivery of an

experience.

The following sections provide a non-exhaustive list of existing technologies and technical methods

which may contribute to meeting these new challenges.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 59 of (135)

7.7.2 Testing

 Simulation tools and test harnesses

 Unit testing and test automation (e.g. various JavaScript unit testing frameworks)

 Tools and techniques used by game developers

7.7.3 Monitoring

 JavaScript logging frameworks (e.g. log4js and others)

 Enterprise-grade IPTV DoE monitoring platforms such as Conviva

 QoS/QoE monitoring for real-time communications (e.g. single-ended using RTCP, full

reference/no reference models)

 Monitoring using software/hardware probes to measure a customer or network environment.

 Event/messaging architectures (again!).

7.7.4 Analytics

 Relational DBMS platforms (from MySQL to Oracle) and associated tools – may be necessary

for integration with legacy components in the broadcast production workflow.

 Enterprise-grade log ingestion and real-time dashboard tools such as Splunk.

 Big Data tools as a scalable and flexible approach for ingesting and analysing semi-structured

data (Hadoop, Pig, Hive, Spark, R to name but a few + commercial tools such as Tableau and

RapidMiner).

 Machine learning methods including clustering, decision trees and time series analysis to

support audience analysis and behaviour prediction.

D2.1 System Architecture

Page 60 of (135) © 2-IMMERSE Consortium 2017

8 Requirements – Architecture Mapping

This section provides a high-level mapping between the requirements that have been defined in

section 2.2 and the architecture as currently defined.

Requirement Architecture component

1. Association of multiple connected devices
(clients) in a home/school/pub environment,

with detection of device features (discovery

and launch).

The association of multiple devices is managed

by the layout service through a context. Devices

will declare their capabilities to the Layout

Service on joining a context. Devices discover

each other using the Device Discovery Service

(using HbbTV 2.0 Discovery, Launch and

App2App Communication protocols.

2. Delivery, decoding and rendering of

multiple media streams on any client in the

environment.

We will aim to adopt codecs and formats that

are supported across all our client devices. The

Layout Service will model device capabilities

and take these into account when determining

placement of media streams onto these devices.

3. Composition of media in arbitrary and

dynamic layouts/presentations.

The Timeline Service and Layout Service will

deliver this capability; giving temporal and

spatial control of media composition

respectively

4. Synchronised presentation of media
between multiple clients in one or more

environments.

The Timeline Synchronisation Service will

deliver this capability for intra and inter home

scenarios. This will be based on DVB-CSS

5. Lobby/chat room to allow clients to meet

during an experience.

The Session (Lobby) Service will deliver this

capability

6. Management of user identities to register

and authorise access to experiences and

enable presence information to be shared.

The Authentication service will deliver this

capability although we have get to select a

particular technology / implementation for this

service

7. Real-time audio and video communication
between multiple home environments.

The Call service will deliver this capability. We

are adopting WebRTC for this service.

8. Tools to enable production personnel to

have live control over aspects of composition

in home/school/pub environments.

As noted in section 7, a detailed, generalised

production architecture has not yet been

defined, but clearly enabling these tools is a key

requirement of this architecture

9. User interface on one or more clients in the

environments to interact with and control

aspects of the experience, which responds to

the devices available in the environment.

These control and interaction elements of the

client user interface will be implemented as

DMApp Components which will be able to

interact with the Layout & Timeline Services to

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 61 of (135)

Requirement Architecture component

control aspects of the experience.

10. Tools and/or data formats to author a

multi-screen experience in terms of layouts,

events and interactions.

The data formats to describe the elements of an

experience and the rules for how they can be

assembled and interacted with are yet to be

defined. The production architecture to enable

tools to support creation of these formats is also

still to be defined

11. Each system component (especially each

client) logs key aspects of its behaviour and

these logs are aggregated.

The Logging Service will deliver this capability.

The Analytics Service will enable insight into

system component behaviour and interactions,

and at a higher level how users are using the

platform.

12. Offline analysis of client behaviour logs after

the event.

The Analytics Service will deliver this

capability.

13. Monitoring of key aspects of the system

during operation with option to aggregate

and feed back into the experience.

For user interactions and viewing behaviour to

be presented within the experience in near real-

time, a specific service may be required. This

service would aggregate that data from

participating clients (and the DMApp

components running on them), and make it

available for presentation.

D2.1 System Architecture

Page 62 of (135) © 2-IMMERSE Consortium 2017

9 Technology Overview

This section of the document gives a brief overview of a number of candidate technologies that have

been identified as potentially relevant to the 2-IMMERSE project. We have grouped these into a

number of categories: system setup, distributed media applications, layout and composition, device

and content synchronisation, authentication and security, production, and media and metadata

delivery. For each technology, there is a goal, overview, pros and cons (from the perspective of

applicability within 2-IMMERSE), and links to further information and implementations.

Table 7 below gives a summary of the technologies covered in this section, and indicates their likely

adoption within the project.

Technology Summary

W
ill

 b
e

ad
o

p
te

d

U
n

d
er

co

n
si

d
er

at
io

n

U
n

lik
el

y
to

 b
e

ad
o

p
te

d

DIAL Device Discovery & app launch

HbbTV 2.0 Device Discovery Device Discovery & app launch

Second-Screen Framework Device Discovery & app launch
for HbbTV 1.x

W3C Presentation API Multiscreen presentation for
web-apps

W3C Remote Playback API Browser media remote control

UPnP Multiscreen Device Discovery & app launch

Meteor JavaScript web/mobile/desktop
app platform

Web Components Re-usable web components

Television Application Layer
(TAL)

TV HTML application portability
layer

WebRTC Browser-based Real-Time
Communications

Cascading Style Sheets Document presentation style
sheet language

HTML5 Web mark-up language

SMIL Synchronized Multimedia
Integration Language

HbbTV browser profile HbbTV browser profile

Browser Media Composition Media object composition client

HbbTV / DVB CSS
synchronization

Frame accurate companion app
sync

Content Synchronisation
Events

Application / content sync

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 63 of (135)

Technology Summary

W
ill

 b
e

ad
o

p
te

d

U
n

d
er

co

n
si

d
er

at
io

n

U
n

lik
el

y
to

 b
e

ad
o

p
te

d

Ad Insertion/Ad
Replacement

HbbTV 2.0 features to support Ad
Insertion/Ad Replacement

Access Control Access control/authentication for
access to data, services and
media

Cross Platform
Authentication

Securely associate a connected
media device with an online user
account

Object-based Production
Tooling

Protocol to enable production
platforms to capture and
distribute editorial decisions to
clients

TRACAB Sports venue moving object 3D
live position capture platform

Virtual Placement Track and place virtual graphics
into live video

Adaptive Streaming HTTP video content delivery

HbbTV Media Formats HbbTV media formats

Dolby AC-4 Multi-channel audio codec and
container format, supporting
object-based audio

360 degree / Immersive
Video

360 degree / immersive Video

Table 7 -Technology Overview Summary

9.1 System Setup

9.1.1 DIAL

9.1.1.1 Goal

DIAL stands for DIscovery And Launch. It is a protocol which enables second-screen devices (smart

phones, tablets or similar devices) to find first-screen devices (these are TVs, Blu-ray players, set-top-

boxes, or similar devices) on the local network and to launch applications on available first-screen

devices.

9.1.1.2 Overview

DIAL defines two protocol components and a client-server architecture. The protocol components are

the DIAL Service Discovery and the DIAL REST Service. DIAL Service Discovery allows DIAL

clients discovering DIAL servers on the local network. DIAL clients are typically implemented by the

D2.1 System Architecture

Page 64 of (135) © 2-IMMERSE Consortium 2017

application running on the second-screen device. DIAL servers are typically implemented by the first-

screen device. DIAL is used by a number of services; in DIAL terms these are called applications.

They are registered at the DIAL registry (http://www.dial-multiscreen.org/dial-registry/) and include

prominent examples like YouTube or the BBC iPlayer. HbbTV has also registered a DIAL

application, for further details please refer to the next section.

The DIAL Service Discovery is borrowed from SSDP (simple service discovery protocol), which is

part of the UPnP stack (UPnP Device Architecture 1.1, 15 October 2008, http://upnp.org/sdcps-and-

certification/standards/device-architecture-documents/). DIAL Service Discovery supplements SSDP

by defining a new search target “urn:dialmultiscreenorg:service:dial:1” and

adding a new response header to the HTTP request for UPnP device description.

The DIAL REST Service allows DIAL clients requesting the DIAL server device to launch and stop

applications. The DIAL REST Service is accessed using HTTP.

9.1.1.3 Pros

 Platform agnostic: DIAL Service Discovery and the DIAL REST Service can be

implemented on any OS.

 Open: Accessed to the specification is free and there are no license fees on its use.

 Slim: The specification document is 30 pages long.

 Low implementation effort: Implementations can be shared across different DIAL

applications

9.1.1.4 Cons

 No stable browser support: There are no stable APIs defined yet, that enable browser apps to

send or trigger UDP packages, which is essential for SSDP. However, a proposal is currently

discussed in a W3C community group (Presentation API).

9.1.1.5 More Info

 Webpage: http://www.dial-multiscreen.org

 Specification: http://www.dial-multiscreen.org/dial-protocol-specification/DIAL-

2ndScreenProtocol-1.7.2.pdf?attredirects=0&d=1

9.1.2 Device Discovery in HbbTV 2.0

9.1.2.1 Goal

HbbTV 2.0 provides facilities for device discovery and application launch to HbbTV devices (this

may be TVs, set-top boxes or similar devices) and companion-screen devices (these are tablets,

smartphone and similar devices).

9.1.2.2 Overview

The HbbTV 2.0 specification requires HbbTV devices to provide a DIAL server that allows

companion screen devices (mobile connected device, like tablet or smartphones) to launch arbitrary

HbbTV applications. For this purpose, HbbTV 2.0 defines a new DIAL application name “HbbTV”,

which can be accessed via the DIAL REST Service. Moreover, HbbTV 2.0 defines a JavaScript API,

which allows HbbTV applications discovering companion-screen devices on the local network and

enables HbbTV applications to launch an application on the companion screen. The protocol to the

http://upnp.org/sdcps-and-certification/standards/device-architecture-documents/
http://upnp.org/sdcps-and-certification/standards/device-architecture-documents/
http://www.dial-multiscreen.org/
http://www.dial-multiscreen.org/dial-protocol-specification/DIAL-2ndScreenProtocol-1.7.2.pdf?attredirects=0&d=1
http://www.dial-multiscreen.org/dial-protocol-specification/DIAL-2ndScreenProtocol-1.7.2.pdf?attredirects=0&d=1

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 65 of (135)

companion device is not specified and relies on companion screen applications provided by the TV

manufacturers.

9.1.2.3 Pros

 Open specification: Stable specification available and recognised by all major TV and STB

vendors.

 Two-way application launch.

 Prototype terminals available: There is a high interest by the manufacturers to implement the

CS features.

 Launch of browser-based or native apps: HbbTV terminals can request the launch of web

pages in the companion screens Web browser. They can also request the launch of native

applications (e.g. Android or iOS apps) on the companion screen.

 Request installation of native apps: HbbTV terminals can request the installation of apps that

are not yet installed on the companion-screen device.

 Development tools: There are Libraries available that ease the development of HbbTV 2.0

companion screen experiences, e.g.:

o HbbCast: https://gitlab-ext.irt.de/christophziegler/HbbtvDialPlayer/tree/master

o node-hbbtv: https://github.com/fraunhoferfokus/node-hbbtv

 Additional APIs for:

o App-to-app communication: HbbTV 2.0 specification requests terminals to implement

a WebSocket server, which can be used by applications running the HbbTV terminal

and the companion screen for exchanging arbitrary messages. This can be used for

example to send control commands from the companion screen to a video player app

on the TV.

o Inter-device synchronisation: HbbTV 2.0 provides facilities for the synchronisation of

media content across devices (cf. section 9.4.1).

9.1.2.4 Cons

 Discovery of companion-screen devices is not specified in HbbTV and depends on either

manufacturers app using a proprietary protocol, or the availability of a published protocol by

the manufacturer.

9.1.2.5 More Info

 Web page of the HbbTV consortium: http://hbbtv.org/

 HbbTV 2.0 specification:

http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_

102796v010301p.pdf

https://gitlab-ext.irt.de/christophziegler/HbbtvDialPlayer/tree/master
https://github.com/fraunhoferfokus/node-hbbtv
http://hbbtv.org/
http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf
http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf

D2.1 System Architecture

Page 66 of (135) © 2-IMMERSE Consortium 2017

9.1.3 Second-Screen Framework

9.1.3.1 Goal

The Second-Screen Framework, developed in the EU FP7 project FIcontent, aims at providing

facilities for companion screen (CS) discovery, CS application launch and app-to-app communication

to HbbTV 1.x devices.

9.1.3.2 Overview

The Core of the Second-Screen Framework is a Web service. Discovery, or rather pairing of TVs and

companion devices, is handled by means of a QR code, which displayed on the TV screen and is than

scanned by the companion device. Pairing information is stored by the Web service. This allows

reactivating connections for later user sessions. So users need to scan the QR code only once per

device pair. Clients (HbbTV or companion app) interact with the framework via a JavaScript API

exposed by JavaScript libraries, which they obtain from the Web service.

9.1.3.3 Pros

 App-to-app communication: Applications running on TV and companion device can

exchange messages via the frameworks Web service.

 Network agnostic: TV and companion device do not need to be in the same local network.

 Interoperability: The system builds upon open Web standards that are supported by HbbTV

1.x terminals. Apps that make use of this system can target a large number of devices that are

already available in people’s households. In Germany 16 million households own a HbbTV-

ready TV set, that is connected to the internet.

 Proven quality: The system is already used in on-air services of German broadcast network

ARD, e.g. VoD portal ARD Mediathek and electronic programme-guide application ARD

EPG.

 Flexible for extensions: Software is maintained by project partner IRT. Extensions (e.g.

support for native applications on Android and iOS or support for multiple companions

being connected to a TV) possible if needed.

9.1.3.4 Cons

 User experience: Requests additional user action for connection setup (scan QR-Code)

 Supported platforms: Currently only web-based companion apps supported

 Multi-user support: Currently a TV can only be connected to one companion device and one

companion device can only be connected to one TV device.

9.1.3.5 More Info

 Web page including documentation and example applications at:

http://lab.mediafi.org/discover-secondscreenframework-overview.html

http://lab.mediafi.org/discover-secondscreenframework-overview.html

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 67 of (135)

 Video that explains the concept and that shows sample applications:

https://www.youtube.com/watch?v=k0y58ah0yrI

9.1.4 W3C Presentation API

9.1.4.1 Goal

The W3C Presentation API aims at empowering web applications to make use of presentation displays

like projectors or connected TVs. For example, this allows devices with limited screen sizes to display

content to a larger audience on a projector in a conference room. The specification considers two use

cases: the 1-UA (one user agent) case and the 2-UA case. In the 1-UA case, the presentation is

controlled and rendered by the same user agent. One could think of a device that has an additional

display connected via HDMI. In the 2-UA case, the control and rendering are handled by two different

user agents. An example could be a mobile device used for browsing a catch-up content portal and a

Miracast-ready HDMI device plugged into a large display for presenting the content.

9.1.4.2 Overview

The W3C specification defines a JavaScript interface exposing features needed to implement above-

mentioned use cases. This includes facilities to gather information on available display devices and to

exchange messages between devices.

9.1.4.3 Pros

 App-to-app communication

 App launch

 Implementations available:

o Crosswalk: Crosswalk is a Web app runtime for mobile devices. The project has been

initiated by Intel.

o FAMIUM: Chromium derivate developed by Fraunhofer FOKUS with Presentation

API support.

9.1.4.4 Cons

 Availability: The Presentation API is not yet available in standard Web browsers.

 Interoperability: The API exposes different features to web applications including discovery

and app-to-app communication. However, the specification does not define how to

implement these features. The API can only make its way, if there are enabling protocols

with broad acceptance across devices of different vendors. However, the HbbTV 2.0

companion screen protocols could be one solution.

 Maturity: The specification is a working draft.

https://www.youtube.com/watch?v=k0y58ah0yrI

D2.1 System Architecture

Page 68 of (135) © 2-IMMERSE Consortium 2017

9.1.4.5 More Info

 Specification available at: https://www.w3.org/TR/presentation-api/

 Use-case and requirements available at: https://github.com/w3c/presentation-api/blob/gh-

pages/uc-req.md

 A tutorial on how to use the Presentation API in Crosswalk applications:

https://software.intel.com/en-us/html5/hub/blogs/presentation-api-tutorial

 The Crosswalk project’s webpage: https://crosswalk-project.org/

 Webpage of the FAMIUM Presentation API project:

https://gitlab.fokus.fraunhofer.de/famium/famium-webscreens/wikis/home

9.1.5 W3C Remote Playback API

9.1.5.1 Goal

The Remote Playback API aims at enabling controlling remote playback of media from a webpage.

9.1.5.2 Overview

The API extends the HTMLMediaElement and equips it with interfaces for querying the availability of

remote devices that are able to playback the desired content and with interfaces to control the playback

on presenting devices.

9.1.5.3 Pros

 Cast solution: Provides a full feature solution to implement cast scenarios (launch and

control video presentation on another device) in Web browsers.

9.1.5.4 Cons

 Availability: The Playback API is neither available in standard Web browsers nor are

reference implementations available.

 Interoperability: The API exposes different features to web applications including discovery

and app-to-app communication. However, the specification does not define how to

implement these features. The API can only make its way, if there are enabling protocols

with broad acceptance across devices of different vendors.

 Maturity: The specification is a working draft.

 Limited set of use-cases: Use-cases that require the exchange of control commands other

than those controlling the playback of media cannot be realised without additional

technology.

https://www.w3.org/TR/presentation-api/
https://github.com/w3c/presentation-api/blob/gh-pages/uc-req.md
https://github.com/w3c/presentation-api/blob/gh-pages/uc-req.md
https://software.intel.com/en-us/html5/hub/blogs/presentation-api-tutorial
https://crosswalk-project.org/
https://gitlab.fokus.fraunhofer.de/famium/famium-webscreens/wikis/home

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 69 of (135)

9.1.5.5 More Info

 API specification available at: https://w3c.github.io/remote-playback/

 Use-Cases and Requirements at: https://github.com/w3c/remote-playback/blob/gh-pages/use-

cases.md

9.1.6 UPnP Multiscreen

9.1.6.1 Goal

Discovery, Launch and App-to-app Communication for multiscreen applications using an open UPnP

standardised approach (as opposed to proprietary approaches, some of which build on parts of UPnP)

9.1.6.2 Overview

The UPnP multi-screen solution enables coordinated interaction between a dynamic set of screen

devices, addressing use cases for synchronisation, and screen passing (moving content between

devices).

The UPnP multi-screen architecture defines a “screen device” and a “screen control point”. Any

device can have either or both of these features. A screen device defines actions and state variables

that can be controlled. A screen control point launches those actions and can read and set the state

variables. The UPnP device architecture provides device discovery and notification when devices

disappear, enabling a dynamic system for interaction between multiple screens.

The UPnP multi-screen solution does not prescribe any particular application design. You can design

an application that does all communication via UPnP, or one that just uses UPnP communication to set

up the screens and load the application, and then communicates out-of-band.

9.1.6.3 Pros

 Open Standard

https://w3c.github.io/remote-playback/
https://github.com/w3c/remote-playback/blob/gh-pages/use-cases.md
https://github.com/w3c/remote-playback/blob/gh-pages/use-cases.md

D2.1 System Architecture

Page 70 of (135) © 2-IMMERSE Consortium 2017

9.1.6.4 Cons

 Seems to largely replicate DIAL functionality

 Not clear the adoption is as broad as DIAL

9.1.6.5 More Info

 http://openconnectivity.org/upnp/specifications

9.2 Distributed Media Applications

A technology overview for ‘Distributed Media Applications’ is challenging because it’s not a single

technology per se and we are covering brand new ground. Below are some examples of application-

layer technologies and architectures that would be useful, some of which could be pushed into the

platform layer if considered fundamental enough, and vice versa.

9.2.1 Overview of application-layer technologies

WP2 is concerned with producing API specifications for a platform, however sustainable development

of DMApps also requires a high-level application framework and a service architecture sat on top of

the underlying platform architecture. Listed below are some of the things we might need to consider

and some candidate technologies. The following research questions to help frame requirements:

1. How can application functionality be decomposed and assigned to separate application

components, potentially on different devices?

2. How can application content and functionality be authored for separate application

components?

3. How can user interfaces be distributed across many devices to many users?

9.2.1.1 Application Framework

 Distributed User Interfaces (DEMIPLAT, Mediascape, Web-components)

 Cross-platform development tools (Cordova, Appcelerator Titanium, TAL, Unity, Xamarin)

 Application layer network protocols (peer-to-peer and/or client-server)

 Compositing architecture and protocols (in the cloud, on a home server, on a client device)

 Fat-clients and thin-clients (VNC, RemoteDesktop, MediaRecorder + WebRTC)

 Application event/messaging (publish-subscribe)

 Application component frameworks (entity/component/event)

 Reactive frameworks (Meteor – also isomorphic)

http://openconnectivity.org/upnp/specifications

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 71 of (135)

9.2.1.2 Service Architecture

 Distributed service-oriented architecture (Microservices, MVC, Multi-tier, Microservice hybrid)

 Service authoring framework (Node.js)

 Event/messaging architecture

 Local caching architecture (proxies, file stores, varnish)

 Storage architecture (state management, local database)

 Scalable cloud-hosted services

There are many other things we could add to this list, but most of the listed items are fundamental to

constructing a distributed media experience that is decomposed into a number of apps, running on

different user devices.

9.2.1.3 Further Information

 Xamarin:

o https://xamarin.com/download-

it?_bt=101035044668&_bk=xamarin&_bm=e&gclid=CNbkzPfnyMoCFRKNGwodl2

oBlQ

 Appcelerator Titanium:

o http://www.appcelerator.com/mobile-app-development-products/

 Cordova and PhoneGap:

o https://cordova.apache.org/

o http://phonegap.com/

 Mediascape multi-device applications:

o http://mediascapeproject.eu/outcomes.php

 Microservices / Service Oriented Architectures:

o http://martinfowler.com/articles/microservices.html

o http://www.infoq.com/news/2014/03/microservices-soa

9.2.2 Meteor

9.2.2.1 Goal

Meteor is an open source application platform for building reactive apps for iOS, Android, and the

web, entirely in JavaScript.

9.2.2.2 Overview

Meteor is a series of open source projects (MIT license) that form a JavaScript app platform for ‘full

stack’ development on mobile and web. It is an isomorphic JavaScript framework meaning that it uses

https://xamarin.com/download-it?_bt=101035044668&_bk=xamarin&_bm=e&gclid=CNbkzPfnyMoCFRKNGwodl2oBlQ
https://xamarin.com/download-it?_bt=101035044668&_bk=xamarin&_bm=e&gclid=CNbkzPfnyMoCFRKNGwodl2oBlQ
https://xamarin.com/download-it?_bt=101035044668&_bk=xamarin&_bm=e&gclid=CNbkzPfnyMoCFRKNGwodl2oBlQ
http://www.appcelerator.com/mobile-app-development-products/
https://cordova.apache.org/
http://phonegap.com/
http://mediascapeproject.eu/outcomes.php
http://martinfowler.com/articles/microservices.html
http://www.infoq.com/news/2014/03/microservices-soa

D2.1 System Architecture

Page 72 of (135) © 2-IMMERSE Consortium 2017

the same language on both the client (web browser) and server (via node.js). This reduces the training

and skillsets required to create an app end to end.

Meteor is also a reactive framework. Reactive programming updates variables automatically on both

client and server sides without extra work by the programmer e.g. updating a client web page without

requiring the client to press Refresh. Changes from any client immediately appear on everyone's

screen.

It integrates with MongoDB and uses the Distributed Data Protocol and a publish-subscribe pattern to

automatically propagate data changes to clients without requiring the developer to write any

synchronization code. On the client, Meteor depends on jQuery and can be used with any JavaScript

UI widget library.

Meteor’s mission is to transition the web from a "dumb terminal" model that is based on serving

HTML, to a client/server model that is based on exchanging data.

Meteor can build a native wrapper for web apps and publish them to the Google Play Store or iOS

App Store with just a few commands.

9.2.2.3 Pros

 Would provide 2-IMMERSE with a way to rapidly create apps that run in a distributed multi-

device environment and share state.

 It’s cross platform, which would different 2-IMMERSE devices interact with one another.

 It’s full-stack and scopes 2-IMMERSE ’s service layer.

 Use a single language (JavaScript) and API client and server side.

 Provides an application deployment mechanism.

 Could possibly be used in conjunction with TAL.

9.2.2.4 Cons

 Meteor ecosystem is still evolving.

 Expects you to use a MongoDB like interface on client and server, although that’s not

necessarily a bad thing.

9.2.2.5 More Info

 Official site: https://www.meteor.com/

 Meteor on GitHub: https://github.com/meteor/meteor

 Blog post (old now and conclusions are out of date, but useful for understanding the

fundamentals): http://blog.jasoncrawford.org/meteor-demystified

https://www.meteor.com/
https://github.com/meteor/meteor
http://blog.jasoncrawford.org/meteor-demystified

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 73 of (135)

9.2.3 Web Components

9.2.3.1 Goal

Express distributed media applications as a collection of reusable components that can be tested in

isolation.

9.2.3.2 Overview

Web components are a standards-driven approach to developing re-usable chunks of web pages. They

assist with modern web application architecture by ensuring apps are structured into logical modules

that can be reused anywhere.

Web components allow you to define custom elements that extend the vocabulary of HTML and

deliver sophisticated user interfaces. They were introduced in 2011. All major browsers have started

implementation of the technologies needed to run web components natively. While browser vendors

are still working on native implementations, a polyfill exists to make web components available to

developers already.

The following table summarises the W3C standards to make up Web Components. (See:

http://webcomponents.org/)

9.2.3.3 Suite of W3C standards

Custom Elements Allow authors to define their own custom tags.

Shadow DOM

Provides encapsulation by hiding DOM sub-trees and

CSS styles under shadow roots.

Templates

Reusable fragments of HTML mark-up that remain inert

until instantiated.

HTML Imports

A way to include and reuse HTML documents via other

HTML documents.

9.2.3.4 Browser Support

Chrome and Opera natively support all web component features, but the webcomponent.js polyfill

gives feature parity across all major browsers.

 (Source: https://github.com/webcomponents/webcomponentsjs)

* Indicates the current version of the browser

http://webcomponents.org/
https://github.com/webcomponents/webcomponentsjs

D2.1 System Architecture

Page 74 of (135) © 2-IMMERSE Consortium 2017

The polyfill may work in older browsers however they may require additional polyfills (such as

classList) to be used.

9.2.3.5 Pros

 Prior to custom elements, there was no standard way to define a component. Every framework,

such as Angular, Ember or Backbone, invents its own mechanism. This results in fragmentation:

components built using different frameworks do not interoperate with each other. Web

components provide a way to define UI elements that can be used in any application, regardless

of the framework it’s written with. In addition, these custom UI elements work like built-in

HTML elements, so they can be used with any HTML framework.

 Custom elements can be used to define completely new HTML elements or to extend the

functionality of existing HTML elements.

 The style of custom elements can be encapsulated inside a shadow DOM boundary, preventing

external CSS rules affecting their appearance.

 Web components themselves can be implemented in terms of other frameworks such as React,

Handlebars and Bootstrap.

 Web Components define subsystems that are simple to test in isolation.

 They have small external interfaces and can be refactored easily.

 Each HTML import typically defines a single element that is testable from the command line

with a headless browser.

9.2.3.6 Cons

 Not verified as operable on embedded HbbTV2 profiles

 Can require a very large polyfill

 Polymer makes authoring easier, but introduces extra layers (platform.js, polymer.js)

9.2.3.7 More Info

 W3C Custom Elements specification (http://w3c.github.io/webcomponents/spec/custom/)

 W3C HTML Imports specification (http://w3c.github.io/webcomponents/spec/imports/)

 Template specification (HTML living standard)

(https://html.spec.whatwg.org/multipage/scripting.html#the-template-element)

 W3C Shadow DOM specification (http://w3c.github.io/webcomponents/spec/shadow/)

9.2.3.8 Supporting Technologies

Web Component Polyfill webcomponent.js is a polyfill for all major browsers:

https://github.com/WebComponents/webcomponentsjs

Packaging Vulcanize reduces an HTML file and its dependent

http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/imports/
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
http://w3c.github.io/webcomponents/spec/shadow/

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 75 of (135)

HTML imports into one file.

https://github.com/polymer/vulcanize

Catalogues/libraries of web component Custom Elements: a catalogue of pre-written custom

elements (web components).

https://customelements.io/

Polymer Element Catalogue: prebuilt Polymer

elements.

https://elements.polymer-project.org/

Web component development environment Polymer: a <declarative> syntax for defining custom

elements that replaces the shadow DOM polyfill with

a lightweight shim, uses a data-binding system, and

significantly reduces code size.

https://www.polymer-project.org/1.0/

The Polymer library provides a declarative syntax that makes it simpler to define custom elements. It

adds templates, two-way data binding and property observation to help build powerful, reusable

elements. An element built with Polymer looks and works just like any other HTML element.

9.2.4 Television Application Layer (TAL)

9.2.4.1 Goal

The goal of TAL is to simplify TV application development whilst increasing the reach of TV

applications. It allows you to write an application once, and be confident that it can be deployed to all

HTML-based TV devices.

9.2.4.2 Overview

The TV Application Layer (TAL) is an open source library written in JavaScript/HTML/CSS for

building Connected TV applications. Today all of the BBC’s HTML-based TV applications are built

using TAL and UKTV and Arqiva have also adopted it.

TAL works by abstracting differences in device behaviour, which is important when TV software

cannot be updated. It provides common APIs for areas that differ the most from manufacturer to

manufacturer.

TAL also provides application layer functionality such as widgets, components, focus management,

events, navigation, carousels and data binding. TAL handles approximately 300 uniquely different

devices including TVs, Blu-ray players, YouView, BT TV, Games Consoles and even Roku

(NowTV). It supports HbbTV 1.0/1.5, HTML5 and Samsung Maple compatible devices.

There are hundreds of different devices in the marketplace and they all use slightly different

technologies to achieve the same result (despite standardisation efforts).

D2.1 System Architecture

Page 76 of (135) © 2-IMMERSE Consortium 2017

9.2.4.3 Pros

 Open source.

 Abstracts differences in devices.

 Write once, run on many devices.

 The bulk of your development can be done on a desktop browser that is built on the same

origins as the TV browsers.

 TAL interacts with Broadcast APIs, HLS streaming APIs etc.

9.2.4.4 Cons

 Provides a lowest common denominator solution

 Doesn’t yet support the new HBBTVv2 features

9.2.4.5 More info

 Open source project on GitHub

o http://fmtvp.github.io/tal/getting-started/introducing-tal.html

TAL exists because there are HTML5 standards, but no one is enforcing them. Compare this to DVB

where you must conform to their specification in order to get a logo on your box.

Desktop browsers behave differently from each other, however the differences between TV web

browsers are much more significant and extensive. TV web browsers are in no way similar to Google

Chrome with its large numbers of contributors and active support community. TV web browsers are

bug-ridden snap-shots made by small teams with tiny maintenance budgets.

HTML is also evolving, which means that TVs certified a year ago are no longer fully compliant.

HTML5 isn't just a single specification, it implements a huge range of specifications and it would be a

massive challenge to ensure they all conformed fully.

WebKit is a popular choice for TVs, consoles and set-top boxes. It's split into two principle libraries,

WebCore (all the common stuff) and a separate library that implements platform specific rendering,

media playback, audio, user input etc. Each TV manufacturer must re-implement the WebKit backend

under a tight deadline for its custom hardware. Even if WebCore is fully standards compliant, there are

differences in this lower layer (interpretations, bugs, different device capabilities etc.). Ultimately, the

TV manufacturer's goal is to launch their product in time for Christmas, so they do the bare minimum

to support apps and quickly move onto something else.

9.2.5 WebRTC

9.2.5.1 Goal

WebRTC is a free, open project that provides browsers and mobile applications with Real-Time

Communications (RTC) capabilities via simple JavaScript APIs.

http://fmtvp.github.io/tal/getting-started/introducing-tal.html

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 77 of (135)

9.2.5.2 Overview

WebRTC enables RTC applications to be developed for the browser, mobile platforms, and IoT

devices, and allows them all to communicate via a common set of protocols. The WebRTC initiative is

a project supported by Google, Mozilla and Opera, amongst others.

WebRTC offers web application developers the ability to write real-time multimedia applications

without requiring plugins, downloads or installs.

This is the technology underpinning Google Hangouts and provides transmission and synchronised

presentation of AV and user defined data over peer-to-peer connections. It uses a SIP (Session

Initiation Protocol) handshake to instigate peer connections (offer, answer, hang-up).

Support for H.264/MPEG-4 Part 10 AVC and VP8 is mandated by the specification. VP9 is also

supported. It uses SCTP (Stream Control Transport Protocol), a message-based protocol with optional

flow control and congestion control algorithms that are superior to TCP, giving better utilisation of

bandwidth. It can be configured for reliable or unreliable data transmission between peers and most

optimisation work has centred on mobile devices and wireless connections.

WebRTC uses ICE/STUN/TURN to traverse NATs and establish connections.

SDP files (Session Description Protocol) are exchanged between peers containing information about

what codecs to use, network connection information for the direct peer-to-peer route and security keys

to use. The SDP is sent via user defined signalling from one side to the other, but you can use any

protocol for this. You can send it via JSON over a WebSocket for example.

9.2.5.3 Pros

 Supported in over 1.5 billion devices worldwide.

 iOS/Android native WebRTC clients available and supported in Chrome, Firefox, Opera and

soon Edge. Works on Chromecast too.

 Possible technology for compositing remotely (in conjunction with MediaRecorder API).

 Facilitates screen sharing, peer-to-peer comms, telepresence and distributing media from a

central DVB receiver.

 Possible 2-IMMERSE technology for a thin-client (dumb client) approach.

 A WebRTC gateway such as Janus could provide a bridge between DVB and client devices for

2-IMMERSE

 Provides secure comms between devices out of the box which will be useful for 2-IMMERSE

use cases in public places

 2-IMMERSE could use RTC DataChannel for non-AV content such as vehicle telemetry with

low-latency.

9.2.5.4 Cons

 Not part of the HBBTVv2 spec

 Not seen applied directly to broadcast TV content, although people have recognised this as a use

case.

D2.1 System Architecture

Page 78 of (135) © 2-IMMERSE Consortium 2017

9.2.5.5 More Info

 Official site: https://webrtc.org/

 Good summary of core components: https://webrtc.org/architecture/

 Spec: https://www.w3.org/TR/webrtc/

 Live demos can be accessed at: https://webrtc.github.io/samples

 MediaRecorder: https://www.w3.org/TR/mediastream-recording/

 WebRTC Gateway (Janus): https://janus.conf.meetecho.com/

9.3 Layout and Composition

9.3.1 Spatial

A wide range of documents formats (content models) support the notion of layout; that is the ability to

define the size and position of elements within the document, whether that document represents

content for printed media, screens or 3d spaces (e.g. PDF, HTML+CSS, SVG, Collada). Similarly,

rendering APIs (typically used by rendering clients for these content models) all have a coordinate

space that honours the layout (size and position) of media as it is rendered (e.g. OpenGL, OpenVG

etc.)

9.3.1.1 CSS (Cascading Style Sheets)

 Goal 9.3.1.1.1

Cascading Style Sheets (CSS) is a simple mechanism for adding style (e.g., fonts, colours, spacing) to

Web documents.

 Overview 9.3.1.1.2

The latest version of CSS (CSS3) is modular set of specifications for styling web documents and

content. At the core of CSS is a visual formatting model where elements in the DOM tree correspond

to boxes, according to a defined box model. The layout of these boxes is determined by a layout

engine according to (amongst other things) box dimensions and type, and their positioning scheme, be

that the normally-flowed, floated, or absolute. Boxes can be overlapped (using z-indices) and

transformed in two and three dimensions. CSS units can be absolute (pixels) or relative to another

property (em/rem, percentages et al.)

CSS also includes a number of features to help with responsive layouts; that is screen layouts that can

adapt to the capabilities of the presentation device. These include

 Media queries

 Flexbox

 Grid Layout

 Pros 9.3.1.1.3

 As a web technology it is generally well supported in browsers, across a wide range of devices.

https://webrtc.org/
https://webrtc.org/architecture/
https://www.w3.org/TR/webrtc/
https://webrtc.github.io/samples
https://www.w3.org/TR/mediastream-recording/
https://janus.conf.meetecho.com/

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 79 of (135)

 A well understood (if sometimes quirky) way of describing 2D box layout (which can be

generalised for non-HTML content).

 Cons 9.3.1.1.4

 Differing levels of maturity and platform/ browser support for particular CSS modules and

features.

 More Info 9.3.1.1.5

 https://www.w3.org/Style/CSS/

 https://www.w3.org/TR/css-2015/ gives a good overview on the current status of various CSS

modules

9.3.2 Temporal

9.3.2.1 HTML5

 Goal 9.3.2.1.1

Standard web components, such as the audio, video and track elements, transparently provide intra-

media and inter-media sync, as well as shared media control via the MediaController object.

 Overview 9.3.2.1.2

When using HTML5, the <video> element allows full-fledged media players to be embedded into web

pages. This element takes a media file as an input, specified via its src attribute. This element is self-

sufficient to provide intra-media and inter-media sync (between audio and video), which means that it

internally and transparently handles the aspects related to de-multiplexing, decoding, buffering and

temporal presentation of media. Similarly, the <audio> element is used for playing audio files.

Playback control (e.g., play, pause, seeking, volume…) can be dynamically set by users through the

controls of the media player (by setting its controls attribute to true). Each media (<audio>, <video>)

element can also have a MediaController, which is an object that coordinates a synchronized playback

of multiple media elements. By default, a media element has no MediaController. An implicit

MediaController can be assigned using the mediagroup content attribute. An explicit MediaController

can be assigned directly using the controller attribute. Media elements linked to a MediaController are

slaved to it. The playback control (e.g., play, pause, seek…), rate and volume of each of the media

elements slaved to a MediaController are shared.

Besides, the <track> element can be used as a child of the media (<audio> and <video>) element. It is

used to specify (external) subtitles, caption files or other timed-text data that must be presented

together with the audio and video data. The input files (in WebVTT format) include a list of items,

called cues, each of which contains a start and end time (relative to the media playback position).

Synchronization between audio-video and timed-text data is automatically provided, even when

dynamic changes in the playback position are issued.

No <track> element can be defined without the prior definition of an associated parent <video> or

<audio> element.

https://www.w3.org/Style/CSS/
https://www.w3.org/TR/css-2015/

D2.1 System Architecture

Page 80 of (135) © 2-IMMERSE Consortium 2017

Synchronization across devices can be achieved by monitoring the playback position of the media

element on each device (by reading its currentTime attribute), exchanging this information via

WebSockets, comparing playback time differences between the involved elements, and finally

adjusting either the playback position (by setting the currentTime attribute) or the playback rate (by

setting the PlaybackRate attribute) during the required time interval.

 Pros 9.3.2.1.3

 Cross-platform, device, and browser support.

 In combination with WebRTC it can provide audio-visual chat channels for social TV

applications.

 Cons 9.3.2.1.4

 Limited access and control to low level (i.e., stream-level, buffering, codec-level…) information

 Different behaviour in different (versions of) browsers

 More info 9.3.2.1.5

 W3C HTML5 API https://www.w3.org/TR/html5/

9.3.2.2 HTMLTimingObject

 Goal 9.3.2.2.1

Recent activities within W3C aim at decoupling dependences between media elements, enabling linear

composition, sequencing and synchronization across devices with the definition of a new

HTMLTimingObject.

 Overview 9.3.2.2.2

A new Community Group (CG), called Multi-Device Timing CG (MTCG), aims at providing standard

mechanisms for a better support for Web-based linear composition, both in single-device and multi-

device scenarios. Linear composition refers to the ability to construct advanced linear media

presentations by coordinating the playback of independent timing-sensitive Web components. It is also

possible to dynamically load and remove individual components during playback (e.g., as a feature of

the storyline, as a reaction to the user input, as a reaction of bandwidth limitations…). Similarly,

dynamic linear composition is relevant in multi-device scenarios, as the same or different (but related)

media content can be simultaneously presented either on companion devices or on geographically

distributed devices (e.g., in Social TV). It would also involve dynamically loading and removing the

proper linear components when the involved devices join and leave.

To achieve it, the MTCG proposes the definition of a new HTMLTimingObject as basis for Web-

based linear composition. The HTMLTimingObject is essentially an advanced stop-watch, wrapping

around the system clock, whose value changes predictably in time (if it is not reset). It also supports

any velocity or acceleration, and may jump to any position on the timeline. The value of the

HTMLTimingObject may be queried for its value at any time.

https://www.w3.org/TR/html5/

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 81 of (135)

In single-device scenarios, the idea is to provide linear composition by replacing the use of the

MediaController as the director, but using the HTMLTimingObject instead. Accordingly, each of the

involved media elements has to equally interface with the HTMLTimingObject, monitor it, and

perform the appropriate reactions whenever it pauses, resumes, jumps or speeds up. The involved

media elements may also enforce control over the shared timing object, by requesting it to pause,

resume, etc.

In multi-device scenarios, linear composition can be achieved by connecting the involved

HTMLTimingObjects on each device to the same shared and external timing service provider (by

specifying a valid URL for the source attribute of the HTMLTimingObject). This way, the involved

HTMLTimingObjects on each device perform as a local representation of a shared online timing

mechanism.

Another objective of the W3C MTCG is to define a new version of the <track> element, removing any

dependences with the <video> or <audio> parent element. The intention is that this new standalone

version of the <track> element can also independently and directly connect with the

HTMLTimingObject, without being a sub-element of the media element anymore. This way, linear

composition can be provided by keeping the independency between the involved elements. Indeed, the

elements do not communicate directly between themselves (they can even be unaware of the existence

of other media elements), but only indirectly through a shared timing object.

 Pros 9.3.2.2.3

 Cross-platform, device, and browser support

 In combination with WebRTC it can provide audio-visual chat channels for social TV

applications

 Cons 9.3.2.2.4

 Limited access and control to low level (i.e., stream-level, buffering, codec-level…) information

 Different behaviour in different (versions of) browsers

 It is not a standard

 More info 9.3.2.2.5

 W3C Timing Object Draft: http://webtiming.github.io/timingobject/

9.3.2.3 SMIL

 Goal 9.3.2.3.1

SMIL (Synchronized Multimedia Integration Language) is an XML language for creating, delivering

and playing back multimedia presentations.

http://webtiming.github.io/timingobject/

D2.1 System Architecture

Page 82 of (135) © 2-IMMERSE Consortium 2017

 Overview 9.3.2.3.2

SMIL 3.0 is a very large modular standard (66 modules), with the intention that application areas can

pick-and-choose modules to define a language (“Profile”) suitable to their needs. 5 such profiles are

defined in the standard, ranging from smilText profile (for only specifying temporal behaviour of

things like subtitles) to Language Profile (full-blown multimedia composition in time and space). SVG

animation also imports some of the SMIL modules to define its temporal characteristics.

In general, SMIL does not deal with media encoding and transport. Media items are generally referred

to by URL, with SMIL specifying how and when the media items should be combined into a

presentation.

The modules fall into a number of broad categories:

 Timing and synchronisation

 Spatial layout

 Content selection

 Linking and interactivity

 Visual effects (transitions, animation)

 Dynamic (programmatic) modifications

Of these categories, the first is the most interesting for this overview. The main timing model is a

hierarchical tree model: individual media items are grouped to play back in parallel, sequentially or

based on user interaction or external events. There is fine-grained control to loop individual items or

start and stop them at specific intervals. SMIL also provides control over how synchronisation

between group members is done: group members can each have their own timeline or a specific group

member can control the timelines of other group members, with the possibility to specify constraints

for how much the timelines can slip.

Groups can then be treated as media items again and combined with other groups or media items to

build a complete presentation.

Content selection allows selecting media item (or group) playback based on all sorts of environmental

and user parameters: preferred language, disabilities, screen size, available bandwidth, etc. Timing and

synchronisation will adapt to selected content.

 Pros 9.3.2.3.3

 The timing and synchronisation model is very complete

 Content selection model is simple and effective

 Modularity allows to pick and match whatever functionality is needed

 Cons 9.3.2.3.4

 Very few full implementations are available

 Complete timing model can be daunting to implement

 Spatial layout model is rather static

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 83 of (135)

 Interaction with other web technologies (especially JavaScript) can be difficult

 The SMIL Language Profile was designed to be writeable by (professional) humans, similar to

HTML. This can be seen as both an advantage and a drawback, the drawback being that some of

the “convenience” features lead to semantics that are difficult to understand.

 More Info 9.3.2.3.5

 https://www.w3.org/TR/SMIL/ is the standard itself.

 http://ambulantplayer.org is a complete open source implementation and has sample documents

and links to further information.

9.3.3 Composition

9.3.3.1 HbbTV browser profile

At the time of writing, the HbbTV specification has three published versions, the browser profile is

identical for 1.0 and 1.5 and got a major update for version 2.0.

The browser profile of 1.0/1.5 is defined by CEA-2014-A also known as CE-HTML. It is based on

XHTML 1.0 which is equivalent with HTML4. The CSS profile is CSS TV 1.0 derived from CSS 2.1.

The scripting environment is ECMA script 3 (ECMA-262 Edition 3) with DOM 2 support.

An informal reference guide can be found at

 http://www.oipf.tv/docs/OIPF-T2-R1_DAE_Reference_Guide_v1_0-2010-03-11.pdf

Important other features and constraints of HbbTV 1.X are:

 The browser window is full screen on 16 by 9 panels and has a logical resolution of 1280px by

720px

 HTML pages have to use the HbbTV mime type: application/vnd.hbbtv.xhtml+xml

 HbbTV applications can be broadcast related or broadcast independent, the former are

controlled, i.e. signalled, by a broadcast channel. The latter are not. An application lifecycle

defines when an application must be started and when it must be stopped. See chapter 6 of the

HbbTV spec for further details.

 Access to broadcast resources is restricted to broadcast related applications

 Broadcast-related applications can be delivered via broadcast (DSMCC carousel) or HTTP

 Cookies and XML HTTP requests are limited to the same origin policy. CORS is not supported.

 Cookies are not supported for apps delivered via DSMCC carousel.

 Scripts, images, etc. may be loaded from other origins.

HbbTV 2.0 updates the browser profile. HTML5 as well as CSS3 are supported. A list of CSS

modules, APIs, etc. can be found in the Web Standards TV profile which is the normative reference

used in HbbTV:

http://www.oipf.tv/docs/OIPF-T2-R1_DAE_Reference_Guide_v1_0-2010-03-11.pdf

D2.1 System Architecture

Page 84 of (135) © 2-IMMERSE Consortium 2017

http://www.oipf.tv/docs/OIPF-T1-R2-Specification-Volume5a-Web-Standards-TV-Profile-v2_3-

2014-01-24.pdf

Compared to the constraints from HbbTV 1 above, the following changes:

 Standard mime types for HTML pages are supported

 CORS (cross origin resource sharing) is supported with XHR2

 The Web Storage API allows to store local information for applications delivered via DSMCC

 Pages can be standard HTML or XHTML, as both is supported by HTML5

HbbTV currently works on a minor update of the specification that will include support for higher

screen resolutions.

9.3.3.2 Media Composition in the browser

 Goal 9.3.3.2.1

Provides solution for compositing of object-based broadcasts on client devices.

 Overview 9.3.3.2.2

BBC R&D have open-sourced their work on compositing media in the browser. This works looks at

sequencing and applying effects to videos and other media sources in real-time within the browser. It

also has provision for modifying the effects and sequences of media in real-time to create dynamic and

interactive content. This work was used to create a number of demos including an object based

weather broadcast that adapts the content to users’ preferences.

Further work in this area will look to define a media composition protocol that will provide a standard

interface for higher-level composition engines to control a media rendering engine. A composition

engine could be something as complex as a variable length story rendering system, or as simple as a

static description of the constituent parts of a program (like a traditional edit decision list). The media

rendering engine could be a browser based renderer, offline back-end server renderer, or even a

screen-less smart-radio device.

In conjunction with this work BBC R&D will also be looking to build a more flexible graph-based

media processing and sequencing library for the browser.

 Pros 9.3.3.2.3

 Would provide 2-IMMERSE with an object-based media compositing solution.

 Higher level abstraction over complex multimedia processing operations.

 Allows 2-IMMERSE to dynamically modify compositing decisions as required by its use cases.

 Built using concepts from IP Studio

 Cons 9.3.3.2.4

 High-level abstractions can limit the flexibility of the final experience.

http://www.oipf.tv/docs/OIPF-T1-R2-Specification-Volume5a-Web-Standards-TV-Profile-v2_3-2014-01-24.pdf
http://www.oipf.tv/docs/OIPF-T1-R2-Specification-Volume5a-Web-Standards-TV-Profile-v2_3-2014-01-24.pdf

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 85 of (135)

 Technology currently focused on rendering media in the browser with server-side compositing

work just commencing.

 Not all work is publically available yet.

 Requires device capable of at least dual AV decode and WebGL for post effects and camera

transitions.

 More Info 9.3.3.2.5

 HTML5-Video-Compositor blog post: http://www.bbc.co.uk/rd/blog/2015-11-open-source-

html5-video-compositor

 HTML5-Video-Compositor: https://github.com/bbc/html5-video-compositor

 Forecaster: http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-

weather-forecast

 Variable length Radio: http://www.bbc.co.uk/taster/projects/responsive-radio

9.4 Device and content synchronisation

9.4.1 HbbTV / DVB CSS synchronization

9.4.1.1 Goal

Enable companion applications that are frame-accurate synchronized to a TV show or advert on

broadcast and on-demand TV services in a home environment.

9.4.1.2 Overview

The TV acts as a server, the companion as a client. Communication is via a LAN (e.g. home Wi-Fi)

using a combination of WebSocket and UDP. DVB CSS defines:

 Content ID scheme for DVB broadcast and IP delivered services.

 How timelines can be carried in DVB broadcasts and derived from DASH streams.

 Network protocols to carry timeline position and content ID where TV is the server (CSS-CII,

CSS-WC, CSS-TS)

HbbTV 2.0 profiles DVB CSS for use in connected TVs. It defines functions for enabling/disabling

the server side from HbbTV apps (HTML+JS apps that run on the TV).

The following are defined by DVB CSS but are not profiled for use in HbbTV 2.0:

 Protocol for notifying companions of “events” in a broadcast/DASH stream (CSS-TE)

 Network discovery mechanism (CSS-DA) … HbbTV defines its own.

DVB CSS also defines a metadata format and protocol between companion and cloud servers for

“resolving” broadcast identifiers and timelines to companion content (CSS-MRS) in a flexible delivery

platform independent way. This does not involve the TV.

http://www.bbc.co.uk/rd/blog/2015-11-open-source-html5-video-compositor
http://www.bbc.co.uk/rd/blog/2015-11-open-source-html5-video-compositor
https://github.com/bbc/html5-video-compositor
http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-weather-forecast
http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-weather-forecast
http://www.bbc.co.uk/taster/projects/responsive-radio

D2.1 System Architecture

Page 86 of (135) © 2-IMMERSE Consortium 2017

DVB CSS and HbbTV 2.0 are open ETSI standards created by the DVB Project and HbbTV

Association.

9.4.1.3 Pros

 Being implemented in HbbTV 2.0 compliant TVs by major manufacturers.

 Single mechanism supporting both broadcast and on-demand delivered content.

 Frame accurate sync.

 Not dependent on cloud based services or proprietary back-ends.

 Client side can be mostly (but not completely) implemented in a browser.

 Does not rely on detecting audio, so suitable for a noisy pub environment.

 Strong expertise available (original spec authors).

 Some tools, code and other resources available (see end).

 HbbTV 2.0 also brings other useful building blocks:

o Discovery of the TV on the LAN (DIAL)

o A TV application environment (HTML+JS)

o Triggering launching apps on the TV (DIAL)

o Communication channel between TV apps and companion (“app2app” comms)

9.4.1.4 Cons

 “Real TVs” not yet available. Prototype TVs likely this year (2016). BBC prototypes with

limited capabilities and/or immature.

 Currently limited library support for companion applications (BBC and IRT efforts).

 Requires LAN connection (e.g. Wi-Fi) with the TV.

 Pure browser based for clients not possible (requires UDP for one protocol) but Apache

Cordova will word (UDP done natively, HTML+JS for everything else).

 TVs not required to support >10 clients (but implementations can choose to).

9.4.1.5 More Info

Specifications:

 DVB CSS ETSI TS 103 286 v1.1.1 parts 1 (overview) and 2 (data model and protocols)

 HbbTV 2.0 ETSI TS 102 796 v1.3.1

Open source tools/code/resources:

 Client and server reference implementations (protocols only)

https://www.github.com/BBC/pydvbcss

 Tools for calibration to achieve frame accuracy

https://www.github.com/BBC/dvbcss-synctiming

https://www.github.com/BBC/pydvbcss
https://www.github.com/BBC/dvbcss-synctiming

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 87 of (135)

 Broadcast timeline generation (GPAC)

https://gpac.wp.mines-telecom.fr/

Closed source tools/code/resources:

 BBC iOS companion library

(implements protocols and media player control and HbbTV TV discovery)

 BBC “CSSTV” TV

(C + gstreamer-based prototype, plays MPEG-2 TS, no TV app environment)

 BBC “CSSTV in browser” prototype

(python proxy server & JS library in browser, syncs against <video> or <audio>)

 BBC Chrome extension & library for companion apps for Win/Mac/Linux

(implements protocols and media player control and HbbTV TV discovery in browser)

9.4.2 Content Synchronisation Events

9.4.2.1 Goal

Interactive applications often require synchronisation to video content. For on-demand clips, usually

the current play position reported by the platform is sufficient. For broadcast services and live streams,

it is a bit more complex, as the play position does not reflect a particular position like a frame in the

service or stream. Therefore, platforms like HbbTV define events that can be embedded in broadcast

or live streams to enable applications to synchronise video.

9.4.2.2 Overview

DSMCC stream events, to be more precise do-it-now stream events, have been included in HbbTV

since version 1.0. Stream events are inserted at the head end as MPEG-2 sections which are not

synchronised to the PCR of the broadcast service but by their position in the stream. At the receiver

side a stream event is delivered to an application that has registered for this event at the time when it

arrives. Use cases are

 notifications in ad breaks which are hints to microsites that provide the user more detailed

information on the product,

 application rendered subtitles, that give the user more flexibility how subtitles are rendered, e.g.

position, size, font

 timed overlays, e.g. in quiz shows

The stream events are only available in broadcast, but DASH and particularly the DVB DASH profile

which is used in HbbTV version 2 adds support for DASH events, which include application layer

events that behave very similar to stream events.

HbbTV 2.0 uses the timeline concept from DVB CSS for inter device synchronisation and for multi-

stream synchronisation, e.g. video from broadcast with audio from broadband. Applications can make

use of those timelines for timed overlays, by retrieving the current value of the timeline. The following

timelines are supported:

 PTS: MPEG-2 presentation timestamps

https://gpac.wp.mines-telecom.fr/

D2.1 System Architecture

Page 88 of (135) © 2-IMMERSE Consortium 2017

 TEMI: A timeline carried in MPEG-2 TS headers

 DASH PR: The DASH timeline relative to the start of the period.

 MP4 CT: the composition time of MP4 (ISOBMFF) files

For retrieving the current value on these timelines as well as for play positions reported by media

objects, HbbTV 2.0 defines a few testable performance parameters as for accuracy, where in the

decoding chain the value is measured and minimum granularity (play position).

9.4.2.3 Pros

 HbbTV 2.0 standardizes app sync for live and on demand.

 Deployments for DSMCC stream events available. Stable technology since DVB MHP.

9.4.2.4 Cons

 Synchronisation timelines and DVB DASH events are rather new technology. Deployments

unknown.

9.4.2.5 More Info

 Specifications:

o See chapter 13.11 of ETSI 102 796 1.3.1 (HbbTV 2.0)

http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60

%5Cts_102796v010301p.pdf

o See chapter 7.2.4 of ETSI 102 796 for DSMCC stream events

9.4.3 Ad Insertion/Ad Replacement

9.4.3.1 Goal

As targeted advertising has become standard on webpages, broadcasters are looking for solutions on

connected TVs. HbbTV 2.0 includes updates that enable broadcasters to insert or exchange content on

an individual basis. While advertisement is the main driver for these features, it could be used for

other purposes as well. One example are regional variants of a broadcast channel, which differ only for

a daily regional news show or magazine.

9.4.3.2 Overview

HbbTV 2.0 defines two mechanisms to realize ad-insertion. One is based on MPEG-DASH, the

second one defines the resource management of multiple media clips in a way, that an application can

play a sequence of media clips without larger gaps.

The resource management defined in HbbTV 2.0 for the HTML5 media element allows pre-buffering

of a second media clip while another media is playing even if the device only supports one media

presenting at any time. In former versions of HbbTV the media object supports queuing of media

clips, but did not require pre-buffering. The informal annex J of HbbTV 2.0 describes the basic

concept behind this.

http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf
http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 89 of (135)

MPEG-DASH includes features to dynamically include content from different sources like an

advertisement server. In short this is based on dynamic updates of the so-called media presentation

description and the use of the W3C XLINK mechanism. First an update introduces a new DASH

period, which is a placeholder and does not include any references to media. The xlink mechanisms

lets the device resolve the actual content of the DASH period with the ad server.

With ad replacement we refer to the use case of replacing ad breaks of a broadcast channel with ad

clips delivered via broadband. One possible option to do this with HbbTV is the combination of

stream events or timelines to signal the ad break start, and the optimized resource management of

HbbTV 2.0.

9.4.3.3 Pros

 Open specification: Stable specification available and recognised by all major TV and STB

vendors.

9.4.3.4 Cons

 Availability of HbbTV 2.0 prototypes

 Though MPEG-DASH is gaining some momentum, features like xlink, multiple periods and

DASH events are not widely implemented.

9.4.3.5 More Info

 HbbTV 2.0 specification:

http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_10

2796v010301p.pdf

 DVB DASH specification:

https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.p

df

9.5 Authentication and Security

9.5.1 Access Control

9.5.1.1 Goals

1. Provide a means of access control/authentication to allow only authorised users to access or

perform actions to personal data, personal devices or otherwise restricted content/data.

2. Enable access on TV and/or second screen devices to protected media and data content where

required.

http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf
http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf

D2.1 System Architecture

Page 90 of (135) © 2-IMMERSE Consortium 2017

9.5.1.2 Overview

Areas which may need to be authenticated / secured may include:

 Discovery and interaction with the TV device from the second screen device and vice-versa.

This falls within the scope of HbbTV/DVB-CSS device discovery and interaction. The security

model for discovery in HbbTV/DVB-CSS is that the devices must be visible on the same local

area network (LAN), and that the devices may prompt the user for approval where necessary.

 Centralised account and personal data management

Users may have account(s) on non-local systems which may store personal data. These

account(s) could be associated with subscription information where the user has purchased or is

otherwise entitled to access to content/services.

A “user” could be defined as a person, collection of person(s), or household/LAN. An

individual device or household/LAN may then be required to support multiple users.

Authentication and security technologies:

TLS (typically in the form of HTTPS) should be used for secure communication between devices and

non-local systems.

Typically, users log into accounts using a username and password. Once a user has done this for the

first time on a particular device, that device could remember the account credentials for future use.

On TV devices, apps running within a HbbTV/browser environment could use browser-provided local

storage APIs, such as cookies and web local storage to store any credentials.

On second screen devices there are a number of mechanisms for secured app-local data storage.

Storing the password itself on the device may be problematic, as if the device is compromised so is the

account. A common solution is to use session tokens instead; this is where a token unique to a

particular log in session is stored on the device; this is often implemented using HTTP cookies. Either

the user can enter the username and password at first log in, or in the case of a TV device paired to a

second screen, the first log in could take place on the second screen, and any session tokens could be

transmitted to the TV device and optionally stored there.

OAuth is a standardised general framework for authentication using tokens. It includes support for

varying access types on a per-token basis and authentication flows such as entering the username and

password on a different application or device than the application to be authorised.

9.5.1.3 Content Access

For rights or commercial reasons, some content may be required to be delivered by a protected

mechanism and/or require authentication to access. This may be less of an issue for the case of a trial

using non-live content, however.

Existing sports media feeds from BT and Dorna which may be useful within the project are protected

by a number of mechanisms (see more info).

For as-live demos, live streams from the above sources could be recorded, and then streamed out later

as if they were live. As the content is no longer live, using reduced or no content protection may be

feasible, (subject to agreement of the content/rights owners, etc.). BT Research & Technology already

has some software for recording live HLS protected or unprotected streams and playing them out as-

live with no/less protection for demo purposes.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 91 of (135)

9.5.1.4 Pros

 Storing passwords on devices: This is very easy to implement.

 Using session tokens/cookies as persistent credentials: The case where the log in using the

username and password is done from same device as where the session cookie is stored and

used is well understood and standardised, and easy to implement.

 Using OAuth: This supports any practical token-based authentication flow.

9.5.1.5 Cons

 Storing passwords on devices: Not very secure, though this may not matter for a prototype/trial.

 Using session tokens/cookies as persistent credentials: Performing the login on the second

screen and passing cookies to the TV is somewhat non-standard and may be problematic; using

some other form of token may not be an issue though. Passing the password to the TV to do the

login there may be insecure, depending on the transport used.

 Using OAuth: This is quite a large and complex specification with many options, such that

different implementations are not automatically compatible with each other, which may be

overkill for a prototype/trial implementation.

 Storing personal data and account details requires additional safeguards, and requires the

implementation of additional components.

9.5.1.6 More Info

 OAuth - IETF RFC6749 – There are a large number of existing implementations

Existing sports media feeds:

 BT: live multicast services (BT Sports).

These are DRM protected and can only be consumed on production YouView STBs (not dev

boxes).

 BT: live services to tablets, Chromecast, etc. (BT Sports).

These do not require any special hardware to access, only credentials for a valid BT account

with BT Sports enabled.

These are available using HLS and SmoothStreaming (used via Silverlight on PC).

 BT: non-live clips (football and MotoGP) and catch-up BT Sports to tablets, etc.

Presumably similar to BT’s live services to tablets (to be confirmed).

 Dorna (MotoGP): Additional live video streams from bike onboard cameras, helicam, etc.

These are not protected and don’t require authentication. HLS format.

 Dorna (MotoGP): Live telemetry and race data.

Awaiting info from Dorna (to be confirmed).

D2.1 System Architecture

Page 92 of (135) © 2-IMMERSE Consortium 2017

9.5.2 Cross Platform Authentication

9.5.2.1 Goal

Cross Platform Authentication (CPA) provides a way of securely associating an Internet-connected

media device with an online user account, to enable delivery of personalised services to the device.

9.5.2.2 Overview

Cross Platform Authentication (CPA) provides a way of securely associating an internet-connected

media device with an online user account, to enable delivery of personalised services to the device, for

example, media recommendations, bookmarking, and pause/resume of media playback between

devices. In its first version, CPA focuses on hybrid (i.e., broadcast and internet) radios, but could also

be applied to connected TVs or set-top boxes.

The protocol is based on OAuth 2.0 but adapted to the characteristics of media devices, and to the

needs of broadcasters. The authentication flow is based on the draft OAuth 2.0 device profile.

The goal of CPA is to grant a client permission to make authenticated API calls to a service provider

on behalf of an end user. The authorization provider manages client identities, and the link between

the client and the end user's identity (which is obtained from an identity provider).

9.5.2.3 Pros

 Makes it easy for end users of connected media devices with limited interaction capabilities to

authenticate with online accounts for personalised services.

 Enables single sign-on across all of a broadcasters’ services.

 Open source implementations of Authorization provider, Service provider and a range of clients

(browser, Android, iOS)

9.5.2.4 Cons

 May be less useful in an environment where devices can discover one another and establish

direct communication

9.5.2.5 More Info

 http://www.bbc.co.uk/rd/blog/2014-09-cross-platform-authentication

 https://tech.ebu.ch/cpa

 http://ebu.io/project/cpa (include links to open source projects)

http://www.bbc.co.uk/rd/blog/2014-09-cross-platform-authentication
https://tech.ebu.ch/cpa
http://ebu.io/project/cpa

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 93 of (135)

9.6 Production

9.6.1 Object-based Production Tooling

9.6.1.1 Overview

The BBC is developing a general-purpose protocol that allows production platforms to capture and

distribute editorial decisions to clients in a standard way. 2-IMMERSE multi-device experiences are

object-based in nature and require editorial decisions and clean feeds to be captured and distributed to

client devices and intermediary composition services.

 Background 9.6.1.1.1

Edit decisions are traditionally expressed using a standardised AAF (Advanced Authoring Format) -

an interchange format for migrating data between software suites. AAF can describe video edits (e.g.

cross-fades and camera switching) but audio support is basic. The general expectation is that audio is

edited in a different package utilising another interchange format called OMF (Open Media

Framework).

Apart from handling audio separately, the biggest problem with these formats is that they are not built

around live production. If you want to do a live production, you have use a 'growing file' that is

appended with new content during the production. This is problematic if you want to capture multiple

edit decisions using distributed workflows because the approach is aimed at one editor using one disk

drive on a single workstation.

The BBC’s approach to object-based production utilises 'Operational Transformation' (OT), a lock-

free, non-blocking technique that stops edit response time from being sensitive to networking

latencies. (https://en.wikipedia.org/wiki/Operational_transformation). As a result, OT is suitable for

implementing collaboration features such as group editing in the Web/Internet context.

All edit decisions are stored as key-frames that describe a state change on a timeline in a networked

database. Issues of conflict and overlap resolution in multi-user workflows that arise from large

batches of changes can be avoided by describing each event as a single atomic state change and by

applying operational transformations to the insert/delete/undo operations.

 Example 9.6.1.1.2

In a traditional AAF file, a simple camera transition from clip#1 to clip#2 is described as follows:

Clip#1 (time0 to time2)

Clip#2 (time2 to time4)

The operational transform approach describes only the salient events that make this camera transition

possible. This description has more in common with animation key-frames. For example:

Time0: clip#1

Time2: clip#2

Time3: null

In this example, rather than using a time/duration description, which could lead to conflict resolution

when the duration of two edits overlap, the simplest description of state at a given time is used to keep

changes as small as possible. Operational transforms are then used to transform incoming updates to

https://en.wikipedia.org/wiki/Operational_transformation

D2.1 System Architecture

Page 94 of (135) © 2-IMMERSE Consortium 2017

ensure consistent ordering of these timeline state changes. Updates to the timeline are described as

atomic operations, for example:

insert(time0, clip#1)

insert(time2, clip#2)

insert(time4, null)

9.6.1.2 IP Studio Data Model

IP Studio is a BBC R&D project that aims to use commodity hardware and IP networks to reduce the

cost of production. The data model it uses for capturing edits and describing media compositions is

derived from the operational transformations approach. It uses domain knowledge to organise state

changes into layers to further limit conflicts and allow different craft roles to work together

collaboratively. Interoperability with legacy formats will eventually be provided via AAF exporters

and importers.

In a production composition, the choice of media source over time is captured in a layer called the

“media sequence” timeline. The video processing effects applied to the current media source are

described by the “processor sequence” timeline and the connectivity graph of the video processors at

any given time is captured as a state block in the “connection sequence” timeline. Finally, a “control

sequence” timeline captures the parameter state changes that drive processor sequences, such as the

degree of cross-fade. In each case, the data captured is the smallest atomic payload of state

information possible that describes the event.

The resulting composition is represented by thousands of JSON blobs representing each state change

submitted to the IP Studio composition database. The model is efficient enough to be distributed

directly to client devices for client-side compositing and flexible enough to be recomposed on the fly

for personalised presentations, both of which are requirements for 2-IMMERSE multi-device

experiences.

9.6.1.3 BBC R&D Primer

Primer is a prototype production tool developed by BBC R&D that allows the operator to perform

camera cuts, reframe existing cameras and edit shot decisions of live footage. The software also has

basic support for book-ending programmes with intros and outros, thus forming a minimum viable

product. The pipeline is object-based from end-to-end, capturing all edit decisions and preserving

every camera feed for compositing later in the cloud or on audience devices.

Primer is written in HTML and JavaScript and can synchronise playback of multiple live DASH feeds.

It provides a master feed that shows the output of the vision mixing process to the operator. It was

important to understand how technologies used for distribution and playback of media over the

Internet such as HTML5 and DASH could also be used at the authoring stage to streamline workflows

and give producers an accurate sense of what the final experience would be. A key challenge for 2-

IMMERSE multi-device experiences is retaining a degree of editorial control over resulting

compositions. Primer as a platform breaks free from traditional editing by permitting multi-device

heuristics to be authored, such as those conforming to a negotiated set of digital rights.

Recently, Primer has been integrated with IP Studio allowing edit decisions to be stored using the IP

Studio data model.

Together Primer and IP Studio’s Media Composition Protocol are candidate technologies for helping

to author 2-IMMERSE multi-device experiences.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 95 of (135)

9.6.1.4 Pros

 The IP Studio data model is an industry-supported effort that is rapidly gaining traction.

 The Media Composition Protocol provides a solution for describing composition operations

required by 2-IMMERSE.

 Supports collaborative workflows.

9.6.1.5 Cons

 Few implementations of the IP Studio data model and Media Composition Protocol currently

exist.

 Technology is still relatively immature.

9.6.1.6 More Info

 BBC R&D Primer blog page: http://www.bbc.co.uk/rd/projects/nearly-live-production

 AAF ASSOCIATION SPECIFICATION (Advanced Authoring Format (AAF) Edit Protocol):

http://www.amwa.tv/downloads/specifications/aafeditprotocol.pdf

 BBC R&D Object Broadcasting: Nuts & Bolts: http://www.bbc.co.uk/rd/blog/2013-08-object-

broadcasting-nuts-bolts

9.6.2 TRACAB

9.6.2.1 Goal

TRACAB is a production platform located within sports venues for capturing the live positions of all

moving objects in 3D space within its field of view.

9.6.2.2 Overview

TRACAB is a camera-based technology deployed on venue at arena-based sports events. It consists of

an array of cameras mounted into two discrete camera boxes, with each box usually containing 3

cameras. The array of cameras in each of the boxes are positioned so that the whole field of play is

covered collectively by each box, forming a stitched panorama of the whole area. The resultant two

panoramic videos are then processed by the TRACAB computer vision algorithms to determine the

physical position of each object to be tracked in 3D space.

The system operator on venue is responsible for assigning identities to sports players so that the

system knows which player is which. Once assigned, each player’s position and the ball is then

automatically tracked and calculated 25 times per second (for every frame of video) at an accuracy of

around 5-10cm.

The resultant data-feed output from TRACAB can take several different forms, depending upon the

target application needs. It can either be supplied in an extracted format, where specific derived

metrics have been calculated based upon agree methodologies. Example metrics include cumulative

http://www.bbc.co.uk/rd/projects/nearly-live-production
http://www.amwa.tv/downloads/specifications/aafeditprotocol.pdf
http://www.bbc.co.uk/rd/blog/2013-08-object-broadcasting-nuts-bolts
http://www.bbc.co.uk/rd/blog/2013-08-object-broadcasting-nuts-bolts

D2.1 System Architecture

Page 96 of (135) © 2-IMMERSE Consortium 2017

distances run, current speed etc. An additional RAW positional feed is also available that provides the

basic x, y, z coordinates of where the player/ball is at that specific moment in time.

In both cases, the data-feed is provided “live”. The latency of the system between a player/ball moving

and the data leaving the TRACAB system for other recipient applications is normally in the region of

2-3 frames of delay.

Additionally, due to certain events taking place within certain sports, then the identity of players may

be temporarily lost, such as when they leave the pitch or when many bodies group together (e.g.

during a goal celebration). To alleviate the provision of the correct identities of players in such

scenarios, the system also provides a delayed secondary data feed of a fixed 15 second delay. This

gives the TRACAB operator a window of 15 seconds within which to reassign the correct identities of

player after they are lost. The 15 second delayed feed is therefore more accurate than the live feed is in

terms of player identities during the whole of a match.

9.6.2.3 Pros

 Can be used in multiple arena-based sports

 Non-intrusive method of capturing tracking data which does not interfere with the sport

 Semi-automated operation and consistent accuracy

 Already deployed on many of the top sports leagues in the world

 Data can power a large variety of new innovation concepts in content delivery for both live and

post-produced content

9.6.2.4 Cons

 Requires an operator on venue to operate the system

 Panoramic video is low quality as it is not designed as an output

9.6.2.5 More Info

 Official site: http://www.chyronhego.com/tracab

9.6.3 Virtual Placement

9.6.3.1 Goal

Virtual Placement is a software tool used within broadcast productions to track the movement of

cameras and to enable the placement of virtual graphics into live video for adding sports

enhancements, graphical elements and for virtual advertising.

9.6.3.2 Overview

Virtual Placement is a software application that implements a range of advanced computer vision

algorithms and techniques to track the Pan. Tilt, Zoom (PTZ) movement of cameras and then place

http://www.chyronhego.com/tracab

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 97 of (135)

graphical elements into the live video content. Traditionally, this has only been possible to achieve by

fitting broadcast cameras with special hardware encoders and calibrated lenses, which is both costly

and technically complex. Virtual Placement achieves the same results through software and without

any special hardware on the cameras. Therefore, any raw video has the possibility for virtual or

augmented graphics to be placed into a scene.

Depending upon the type of video content as well as the type of graphics elements and enhancements

to be placed into the scene, Virtual Placement offers several different placement methodologies to

achieve the best end result. These are as follows:

 Pixel Tracking – This base module recognizes the pixels used in a scene to determine camera

PTZ. This methodology can only place 2D graphical elements into the 2D video.

 Anchor Tracking – This module uses screenshots taken from video as the reference to where

and when to place graphical elements. In dirty-feed video sources consisting of multiple camera

angles, this methodology allows

 Line Tracking – This module is designed for stadium based sports where the lines used in the

field of play of the sport are used by the system to track camera movement. Examples are for

sports such as Football, Tennis, Rugby, NFL etc.). This methodology enables an understanding

of 3D space and perspective from the singular perspective of the 2D video.

 Scene Tracking – This module is designed for scenarios where an understanding of the 3D

perspective is required but there are no lines or other known geometry in the scene as reference.

In all cases, Virtual Placement requires a calibration process to be performed in advance of being used

on the live video. Depending on the content and the module of the software used, this calibration

process can take up to 15 minutes of preparation time. Additionally, the calibration may need to be

updated dynamically during live production usage to adjust for changing lighting conditions in a

scene.

9.6.3.3 Pros

 Non-intrusive method to cameras

 Less complex in setup than using camera encoders

 More cost-effective than using camera encoders

 Can be used on any video content

 Very effective for dealing with video content from unstable camera footage with vibrations

 Can assign different graphical content to different destination clients

9.6.3.4 Cons

 Can only be used on fixed position camera content

 Cannot place 3D objects into 3D scenes

9.6.3.5 More Info

 Official site: http://www.chyronhego.com/virtual-graphics/virtual-placement

http://www.chyronhego.com/virtual-graphics/virtual-placement

D2.1 System Architecture

Page 98 of (135) © 2-IMMERSE Consortium 2017

9.7 Media and Metadata Delivery

9.7.1 Adaptive Streaming

9.7.1.1 Goal

Adaptive streaming over HTTP provides a reliable, cost-effective means of delivering continuous and

long-form video over the Internet. It allows a receiver to adapt the bit rate of the media to the current

network conditions in order to maintain uninterrupted playback at the best possible quality. It offers

compatibility with large-scale HTTP caching infrastructure to support delivery to large audiences

 HLS (HTTP Live Streaming) is Apple’s adaptive bitrate Internet media streaming technology.

 Smooth Streaming is Microsoft’s adaptive bitrate Internet media streaming technology.

 MPEG-DASH is an open standard to enable adaptive bitrate Internet media streaming.

9.7.1.2 Overview

Error! Reference source not found. provides a summary of key features of these three adaptive

streaming technologies, including their manifest types, storage structure, late binding capability and

encryption options.

Late Binding: Audio and Video is held separately on the server. Different combinations of audio and

video can be requested by each client; this allows many custom combinations while using minimal

server space. The audio and video is bound together by the client, late in the process.

Common Encryption (CENC): The media is encrypted using a content key. This content key is in

turn protected by multiple different Digital Rights Management (DRM) systems. The resulting media

collection is now protected, and accessible by multiple devices using different DRM systems;

increasing availability whilst maintaining the same number of files on the server.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 99 of (135)

Adaptive

System

Origins Used by Manifest Type Media stored as Late Binding Encryption

HLS A very early streaming

system that was

developed by Apple.

Still in use today and

being extended to allow

more features

Mandated by Apple for

any streaming app that

uses cellular

connectivity. Global

adoption, available on

almost all devices.

Hierarchical files.

Explicitly listing

every segment

Large collections of

separate segments,

stored in TS

containers.

Not possible, all

possible

combinations must

be created and held

by the server.

Typically the manifest is un-

encrypted, and all media

segments are fully encrypted.

Smooth

Streaming

A propriety system

developed by

Microsoft. Powerful

feature set, originally

locked to Microsoft

systems.

The enhanced security

offered makes smooth

streaming very suitable

for premium VoD. i.e.

Netflix

Single, template

based file.

Manifest describes

a single media

presentation.

Each representation

held as a single large

file, audio and video

held separately.

Each large file is

internally

fragmented into

fMP4.

Client device can

request different

combinations of

audio and video

from the server,

binding them

together as needed.

Encryption can be detailed in either

the manifest or within the fragments.

The header portion of each fragment is

left un-encrypted to assist file

handling.

DASH Developed as the final

solution, combining the

best parts of Smooth

Streaming and HLS.

Owned by the MPEG

Group, released as an

open standard.

Not currently in

widespread use, but due

to its standardisation,

many systems are

looking to converge on

DASH.

i.e. YouView.

Single, template

based file.

The manifest can

describe a playlist,

allowing pre-roll

and advert

insertion.

Large collections of

separate fragments,

stored in fMP4

containers.

Client device can

request different

combinations of

audio and video

from the server,

binding them

together as needed.

Header portion of each fragment

left un-encrypted. Manifest holds

information for decryption.

Supports multiple DRM systems

referencing a single encryption

key. Common Encryption

(CENC)

Table 8 - Adaptive Streaming Technologies

D2.1 System Architecture

Page 100 of (135) © 2-IMMERSE Consortium 2017

9.7.1.3 More info

HLS:

 https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming/

DASH:

 ISO/IEC DIS 23009-1.2 Dynamic adaptive streaming over HTTP (DASH)

 http://dashif.org/

 http://dashif.org/software/

9.7.2 Media formats supported by HbbTV

The main intention of the HbbTV A/V profile is to reuse codecs used in broadcast services. That

means H.264/MPEG-4 Part 10 AVC is the main video codec and AAC the main audio codec. Other

codecs are supported if they are for broadcast, e.g. Dolby AC3. Availability of extra codecs is

signalled in the XML capabilities that are available through a JavaScript API.

As delivery protocol, HTTP progressive download and, since HbbTV 1.5, MPEG-DASH are

available. For progressive download either MPEG-2 Transport Stream or the MPEG-4 file formats

may be used as system format. The MPEG-DASH profile for HbbTV 2.0 is DVB DASH. This is

backwards compatible and includes the HbbTV 1.5 profile.

https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf

The following sections show the codec details and supported video resolutions.

9.7.2.1 A/V codecs

System Max bitrate Video Audio Mime-type

MPEG-2/DVB

transport stream
8 Mbit/s H.264/MPEG-4

Part 10 AVC

HD/SD

H.265/MPEG-H

Part 2 HEVC 8-bit,

10-bit, UHD **

MPEG-4/AAC

Dolby AC3 *

Dolby E-AC3

**

video/mpeg

MPEG-4 file

formats
video/mp4

MPEG-DASH

12 Mbit/s if UHD

is not supported

26 Mbit/s if UHD

is supported

application/dash+xml

MPEG-4 file

formats
- - audio/mp4

(RAW) - - MPEG-1 layer 3 audio/mpeg

Table 9 HbbTV A/V Codec Support

* HbbTV 1.0 if supported for broadcast

** HbbTV 2.0 if supported for broadcast

https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://dashif.org/
http://dashif.org/software/
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 101 of (135)

9.7.2.2 Video resolutions supported by HbbTV 1.0/1.5/2.0

Standard HbbTV 1.0/1.5

HbbTV 2.0

Coding H.264/MPEG-4 Part 10 AVC H.265/MPEG-H Part 2 HEVC AVC/HEVC

Protocol Progressive MP4 /TS/DASH

(HbbTV 1.5)

Progressive

MP4 / DASH

Progressive

MP4 / DASH

DASH

SD/HD/UHD

Label AVC_SD_25 AVC_HD_25 HEVC_HD_2

5

HEVC_UHD_

25

Reference TS 101154 1.9.1

TS 101154 1.11.1

5.6.2.3

TS 101154 1.9.1

TS 101154 1.11.1

5.7.1.4

TS 101154

2.2.1

15.14.2.2

TS 101154

2.2.1

15.14.3.2

TS 103285

1.1.1

10.3

192 x 108 p25/p50

320 x 180 p25/p50

384 x 216 p25/p50

480 x 270 p25/p50

352 x 288 p25/i25 i25

512 x 288 p25/p50

640 x 360 p25/p50

704 x 396 p25/p50

720 x 404 p25/p50

768 x 432 p25/p50

852 x 480 p25/p50

960 x 540 p25/p50 p25/p50

352 x 576 p25/i25

480 x 576 p25/i25

544 x 576 p25/i25 i25

720 x 576 p25/i25 i25

704 x 576 i25

1024 x 576 p25/p50

640 x 720 p25/i25/p50

960 x 720 p25/i25/p50 p25/p50

1280 x 720 p25/i25/p50 p25/p50 p25/p50

1600 x 900 p25/p50 p25/p50

960 x 1080 p25/i25/p50

D2.1 System Architecture

Page 102 of (135) © 2-IMMERSE Consortium 2017

1280 x 1080 p25/i25/p50

1440 x 1080 p25/i25/p50 p25/i25/p50

1920 x 1080 p25/i25/p50 p25/i25/p50 p25/i25/p50

2560 x 1440 p25/p50 p25/p50

3200 x 1800 p25/p50 p25/p50

2880 x 2160 p25/p50

3840 x 2160 p25/p50 p25/p50

Table 10 - HbbTV Supported Video Resolutions

9.7.3 Dolby AC-4

9.7.3.1 Goal

A multi-channel audio codec and container format with special features which will enable the scalable

and efficient delivery of object-based, personalised audio and metadata to a variety of devices.

9.7.3.2 Overview

Dolby AC-4 is a product developed by Dolby Laboratories to succeed the existing multi-channel

codec marketed as Dolby Digital Plus. The AC-4 codec itself is being standardised by ETSI (TS 103

190 Parts I and II) and the DVB (TS 101 154). It is also included in the ATSC 3.0 specification.

In terms of audio coding, AC-4 improves on Dolby Digital Plus (DD+) by allowing up to 10

independent streams to be encoded (versus 8 streams with DD+) and with approximately 50% better

compression. This equates to roughly 160kbps for a high quality 5.1 stream, or 384kbps for a fully-

immersive experience.

AC-4 introduces the concept of an audio I-Frame which, when aligned with the equivalent video I-

Frame, ensures clean cuts between different streams.

Probably the most interesting feature of AC-4 is its flexible and scalable container format. Each AC-4

frame contains a Table of Contents which enables multiple ‘presentations’ to be defined, each of

which define a combination of available audio and metadata streams. This means that a variety of

different personalised audio presentations can be generated from a single AC-4 stream.

AC-4 also defines an Enhanced Metadata Format (EMDF) which can be used to generate metadata-

only streams which are included within presentations and synchronised with corresponding audio

streams. Third parties could potentially define their own sub-schemas which could be recognised by

decoders in specific devices: for example, in principle EMDF could be used to carry subtitle

information or even triggers to launch applications or content.

For Dolby, the main purpose of AC-4 is to deliver immersive, object-based audio using its Dolby

Atmos technology. AC-4 supports spatial coding of up to 17 spatial groups on top of the 10 core

channels described above. These can be rendered to any speaker configuration by choosing an

appropriate presentation authored within the AC-4 stream.

AC-4 is a new format and support is not yet widespread (January 2016). Unlike one traditional

approach of locating the DD+ decoded in an AV Receiver or Soundbar, the preferred approach is for

AC-4 to be decoded in the Set-Top Box or client device, which will also provide appropriate controls

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 103 of (135)

for personalisation. While hardware support is expected during the lifetime of 2-IMMERSE, a mobile

app SDK is expected during early 2016.

9.7.3.3 Pros

 Flexible container format designed for object-based audio.

 Built-in support for personalisation through selectable ‘presentations’.

 EMDF provides opportunities to add functionality and could be used to support multi-screen

experiences where alternatives aren’t available (e.g. in a VOD stream?).

 Standardised and will be implemented by major hardware vendors in the near future.

 TV service providers including BT are exploring how they will support object-based audio

(Dolby Atmos) for both linear TV and VOD. This can be done to a limited extent using DD+,

but AC-4 will be expected later.

 Dolby are keen to support 2-IMMERSE R&D work involving AC-4.

9.7.3.4 Cons

 Hardware implementations not yet available – although they will be during the lifetime of 2-

IMMERSE. The first SDK to be available will be only for mobile OS.

 AC-4 tools and encoders are proprietary and will need to be acquired (possibly for free) and

learned.

 Browser support will not be available by default – we will need to check whether the SDK

provides plugin support.

 Object-based audio demands some changes to the production environment, and for live

production this may mean upgrading existing mezzanine formats such as Dolby E to their

higher-capacity equivalent (such as Dolby ED2).

 More Info 9.7.3.4.1

 AC-4: ETSI TS 103 190 Parts I and II

 DVB TS 101 154 v13 and v14

 The BT team have further literature direct from Dolby which can probably be shared if we

inform them first.

 Atmos/AC-4 SDK for mobile – available Spring 2016.

9.7.4 360 degree / Immersive Video

9.7.4.1 Goal

The best entertainment emotionally engages the audience and presents content in a way that provides

full immersion in the experience. Whilst this can mean using large screen TVs, new opportunities

associated with the emergence of consumer centric immersive virtual reality video and computer

D2.1 System Architecture

Page 104 of (135) © 2-IMMERSE Consortium 2017

generated content presented on tablets and head mounted displays that fill the viewer’s entire field-of-

view, are being released offering a new immersive experience.

The virtual reality ‘hype’ of being within a Star Trek style ‘Holodeck’ where viewers inhabit the same

space as the movie they are watching may still be some way off but VR entertainment experiences

could be about to move from niche markets into mainstream consumers’ homes

9.7.4.2 Overview

Capture

An immersive video is the recording of a real-world scene where the view in every direction is

recorded at the same time. The term ‘every direction’ can of course be limited to a panoramic view

with less ‘width’ than that needed for a full 360-degree view.

Multiple cameras arranged in a circle or arc, with their FOV overlapping, produce a series of images

that once stitched together produce an immersive image which can then be further processed to create

an immersive video experience.

BT Research & Technology have experimented with two camera rigs to create 360 degree video

assets. Costs of the above rigs are approximately £2000 each.

Camera / capture systems are being developed and released with increasing frequency to improve the

capture process – of note in this space are Ricoh with their Theta range of cameras -

https://theta360.com/uk/, Giroptic - http://www.giroptic.com/ - has a consumer 360 camera and Nokia

Technologies are launching a ‘high-end’ solution with the Nokia OZO - https://ozo.nokia.com/.

Google, in collaboration with GoPro, are launching a 16-camera array (using ‘synchronised’ GoPro

Hero cameras) called the Odyssey - https://gopro.com/odyssey.

Processing

Typically, once captured the multiple video sources need to be processed and ‘stitched’ together to

produce a single 360-degree view – commonly this is an off-line process producing VoD content, (as

opposed to live video), and is a single stitched ‘spherical’ video presented as an equi-rectangular

video.

https://theta360.com/uk/
http://www.giroptic.com/
https://ozo.nokia.com/
https://gopro.com/odyssey

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 105 of (135)

Due to the nature of stitching the multiple video sources the resulting spherical videos are relatively

high resolution – commonly a UHD-esque 3840x1920 pixel resolution encoded as a high data rate

H.264/MPEG-4 Part 10 AVC MP4 encapsulated video file. It should be remembered that when being

viewed the user is only presented with a small area of the full video to fill their field-of-view. Whilst

the full video may be a ‘UHD’ resolution the viewer is looking at a ‘less than’ HD part of the video.

Capture resolutions as well as output resolutions are likely to increase beyond UHD/4K with a

resultant increase in power required for processing these videos.

Software solutions for off-line processing are available from Kolor within their Autopano suite -

http://www.kolor.com/ - and from VideoStitch - http://www.video-stitch.com/ - amongst others.

Google’s software solution, working solely with the Odyssey camera rig, moves the processing and

stitching of the separate videos into the ‘cloud’ using much of the same ‘backend’ as YouTube.

Real-time, live, capture and processing is increasingly available – although still in early production

stages. High-end solutions from NextVR - http://www.nextvr.com/ - have been used for high-profile

sports events using proprietary and modified broadcast equipment. VideoStitch has a ‘consumer’

product, VahanaVR - http://www.video-stitch.com/live-vr/ - that uses commercially available capture

cards and GoPro style camera rigs, combined with fast CPU and GPU processing to provide live 360-

degree video.

Delivery

YouTube has supported upload, storage and playback of 360 degree video,

(https://www.youtube.com/results?search_query=360+video), since March 2015 and this support

covers all playback options, desktop and app on all platforms. Roll-out of ‘split-screen’ playback view

allowing for 3D stereoscopic video is also beginning, (available on Android platform as of January

2016). Facebook also supports 360 degree videos in News Feeds across multiple platforms.

There are a number of dedicated players for 360 degree content available across desktop and mobile

platforms, (e.g. the Kolor Eyes player - http://www.kolor.com/kolor-eyes/), offering playback of web-

hosted content, (either streaming video or download-and-play), or locally stored video files.

Due to the video resolutions used, (and end-user display processing), delivery of 360 degree video is at

the higher end of current platform requirements – the best experience for YouTube hosted videos is by

selecting the 2160p display mode and on a ‘superfast’ broadband network.

Solutions involving adaptive video streaming and ‘tiled’ streaming are being explored, (Facebook is

now offering ‘Dynamic streaming’ of 360 videos, storing all of such content at multiple resolutions

and only displaying the best quality at the area of the video being currently looked at, the remainder

http://www.kolor.com/
http://www.video-stitch.com/
http://www.nextvr.com/
http://www.video-stitch.com/live-vr/
https://www.youtube.com/results?search_query=360+video
http://www.kolor.com/kolor-eyes/

D2.1 System Architecture

Page 106 of (135) © 2-IMMERSE Consortium 2017

being lower resolution automatically swapped when the view changes -

http://www.engadget.com/2016/02/21/facebook-dynamic-streaming-gear-vr/).

Consumer viewing

The recent technology developments in the field of consumer-orientated virtual reality have revolved

around displays, video and graphics processing, motion sensing, motion tracking and the creation of

‘immersive’ content. Coming together in the form of Head Mounted Displays, (HMD’s), these use

near-eye screens and lenses to fill the user’s field of view and include sensors to translate head

movements into changes in POV within the content being watched.

Leading ‘high-end’ display solutions are from Oculus, (https://www.oculus.com/en-us/rift/), and HTC,

(http://www.htcvive.com/uk/).

Google introduced a much lower cost ‘entry-level’ display solution, utilising smartphones for the

display and POV-changing motion sensors, the Google Cardboard -

https://www.google.com/get/cardboard/ - typically costing as little as £3.

Samsung have gained a lead in the consumer market with their ‘first to market’ solution based around

their Galaxy smartphone hardware. The Samsung Galaxy GearVR

(http://www.samsung.com/global/galaxy/wearables/gear-vr/) primarily uses a smartphone for the

processing and display of immersive content but with higher quality materials and lenses than those

found in Google’s cardboard. Samsung, in collaboration with Oculus, provide a curated and high-

quality CGI app store for GearVR immersive content discovery and showcases.

Whilst using some form of HMD results in the best immersive experience 360 degree video content

displayed on a tablet or smartphone – as a ‘window on another world’ – offers a lower ‘barrier to

entry’ and can be equally compelling. Using the KolorEyes content player in tablet mode as an

example - https://itunes.apple.com/gb/app/kolor-eyes-360-video-player/id551037018?mt=8 and

https://play.google.com/store/apps/details?id=fi.finwe.koloreyesandroid&hl=en_GB

http://www.engadget.com/2016/02/21/facebook-dynamic-streaming-gear-vr/
https://www.oculus.com/en-us/rift/
https://www.google.com/get/cardboard/
http://www.samsung.com/global/galaxy/wearables/gear-vr/
https://itunes.apple.com/gb/app/kolor-eyes-360-video-player/id551037018?mt=8
https://play.google.com/store/apps/details?id=fi.finwe.koloreyesandroid&hl=en_GB

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 107 of (135)

9.7.4.3 Pros

 360 degree video provides a highly immersive viewing environment to content consumers – a

feeling of being there.

 Capture, processing and delivery systems are in place and share features and requirements of

existing IP video delivery.

 A wide range of viewing options are available –fully immersive HMD’s, smartphone based

solutions of various quality, desktop PC, tablet and smartphone options.

 High ‘wow’ factor

9.7.4.4 Cons

 Primary focus for much of the resurgent VR industry is on games and CGI content, not 360

degree video

 POV is interactive but camera position is static or ‘captured’ at content capture time

 Capture and initial processing resolution may be high but typically results in a relatively low

‘perceived’ resolution to the end user

 The current ‘best’ immersive media experiences are socially isolating and all-encompassing

(using a HMD and headphones)

D2.1 System Architecture

Page 108 of (135) © 2-IMMERSE Consortium 2017

10 Conclusions and Next Steps

In this document we have presented the 2-IMMERSE system architecture. As noted in the Executive

Summary, this is work in progress. We expect that the architecture will evolve both as we refine it and

specify it in more detail (for example through detailed component interface specifications), and as we

address the expanding scope of the four multi-screen service prototypes through the project. Within

the project we will keep this document updated to reflect this development.

We have taken a ‘layered’ approach to documenting our system architecture, in order to maximise

clarity, and maintain an appropriate ‘separation of concerns’:

 The platform is defined as a set of services, which support the client devices applications. In

defining these services, we have described the service functionality, key interfaces, and

technology choices where they have been made.

 The client application architecture defines a common HTML and JavaScript environment for

the Distributed Media Application components, and the underlying application that manages

their lifecycle and presentation. It also details how this is supported on the various devices that

participate in the system.

 The production architecture is defined at a high level; however, we note that a detailed,

generalised production architecture is difficult to create, and specific production architecture

will be determined for each trial.

The next step in developing the system architecture is to specify the component interface

specifications, which will be published in project deliverable D2.2 Platform-Component Interface

Specifications. Alongside the development of these interface specifications we will develop skeleton

implementations of these components to validate the interface specifications. These will then be

further developed to support the functionality required for the first multi-screen service prototype

(Watching Theatre at Home).

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 109 of (135)

 Watching Theatre at Home User Stories Annex A

The user stories in the table below describe functionality required by the 2-IMMERSE system for the

Watching Theatre At Home service prototype. These are described from the point of view of two

actors; the user at home and the producer. Originally published in D4.1, this version has been

augmented with agreed basic priorities, and implementation notes, which capture current thinking on

how described functionality might be implemented. Both were the outcome of project discussions.

N.B. These user stories and notes make reference to a ‘box’; this is the metaphor for users sharing an

experience (i.e. in the same session) but in different physical locations (contexts), based on the concept

of the theatre box.

As a user at home As a producer Priority Implementation

HT001

Before the live performance of

play on TV I want to use

Facebook and Twitter to make it

clear to my friends and others

online that I will be watching the

play at home later, so that I can

later invite some of them to watch

the play with me.

HT101

Before the performance I

want to be able to alert users

of the system about this new

production, its casting and

its distinctive features, so as

to be able to attract users.

Essential Trivial – doesn’t require

additional

implementation in 2-

IMMERSE

HT002

Before the live performance I

want to learn from Facebook and

Twitter who else is planning to

watch so that I can choose who to

invite to watch with me.

 Essential Trivial – doesn’t require

additional

implementation in 2-

IMMERSE

HT003

Before the live performance I

want to be able invite to people to

watch with me so as to share the

experience of watching the

performance with my friends or

others.

HT102

Before the performance I

want to be able to send

personalised invitations to

those who have used the

system before to encourage

them to participate in this

new experience. This is so

that I can maximise the

number of users and

revenue.

Essential Needs a registration

process and the ability to

associate users with

boxes (using the

Authentication & session

(Lobby) services)

Need to sort out the

process for getting our

apps on the appropriate

app stores and directing

people to download

them.

Box guests can be edited

until a specific time

before the show.

We will mandate that all

trialists have at least a

TV – so box participants

will need to be firmed up

a while before the show.

HT004 Essential

D2.1 System Architecture

Page 110 of (135) © 2-IMMERSE Consortium 2017

As a user at home As a producer Priority Implementation

Before the live performance I

want to be able to receive

invitations to watch with others,

and to accept or decline these, so

that I can control with whom I

will be watching the performance.

HT005

Before the performance I want to

be able to use my credit card or

PayPal to purchase access to the

production and its enhanced

features, so as to be able to

participate in the experience.

HT103

Before the performance I

want to be able to process

payments via credit cards

and PayPal so as to develop

a revenue stream for the

production.

Not needed

for trial

HT005b

Before, during and after the

performance I want to see and be

seen, hear and be heard, by others

within the group who I have

chosen, and to be able to exchange

private and group text messages

within this group, so that we can

enjoy each other’s company with

the performance as a focus, and to

exchange ideas and reactions

prompted by the play.

 Essential Box of one is possible.

Need to limit the

maximum number of

people who can be in a

box. Needs to be at least

6. (lobby service

requirements)

WebRTC will enable

this, although audio is a

major problem for

implementation and will

need to be addressed.

HT006

Before, during and after the

performance I want to be able to

access relevant text, image, audio

and video resources about the

play, the production, the cast and

crew, made available by the

producer so that my experience

and appreciation of the broadcast

can be enriched and made more

compelling.

HT104

Before, during and after the

performance I want to be

able to provide relevant text,

image, audio and video

resources about the play and

production before, during

and after the broadcast. This

is both to provide a rich,

compelling experience for

the home user and to add

value so as to differentiate

my media offering from

those of competitors.

Essential Relatively trivial to

implement as DMApp

components, made

available at appropriate

time by the timeline

service.

HT007

Before the performance I want to

be able to access live and

interactive 360-degree video and

audio from the foyer of the

theatre, so as to feel that I am part

of the communal experience of

watching the play with a physical

audience.

HT105

Before the performance I

want to make available a

360 live video feed from the

foyer of the theatre so that a

home user can access

content that mirrors the

experience of arriving at a

theatre and enhances the

anticipation and sense of

event enjoyed by those

Not needed

for trial.

Too complex given the

potential benefits in the

trial.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 111 of (135)

As a user at home As a producer Priority Implementation

attending a physical theatre.

HT008

Before the performance, or at any

point during it, I want to be able

to personalize my access to the

resources available to me (in, for

example, HT006, HT016 and

HT020) in order to set their

address to Introductory, Informed

or Expert. This is so that I can

receive materials that will best

enhance my experience and

understanding of the production.

HT106

Before the performance, or

at any point during it, I want

to be able to facilitate

personalized access to the

resources that I am making

available (in, for example,

HT006, HT016 and HT020)

so that I can offer materials

that will best enhance my

user’s experience and

understanding of the

production.

Desirable. A lot more content will

need to be produced.

Implementation within

the architecture should

be feasible (either as

multiple DMApp

component versions, or

as single components

that adapt their

presentation according to

selected expertise level -

TBD).

HT009

During the broadcast I want to be

able to view the various media

streams as below on both the main

screen in the room and on one or

more second-screen devices, and

to be able easily to switch these, so

as to achieve control over the

viewing experience.

HT107

During the broadcast I want

to be able to produce, and

control the available options

for displaying the theatre

play within the home so that

I can provide the most

satisfying communal

simulation of theatre-going

for the user – and in this

way attract her to revisit the

experience in the future.

Essential. Users will be able to

control and personalize

layout. We may not be

able to have complete

flexibility to show all

streams on all screens

due to device limitations

(e.g. if we can’t get

cloud composition ready

in time).

Note that a media stream

here could be

information content as

well as streaming video.

HT010

During the broadcast I want to be

able to see a graphical display of

how many other home viewers are

watching at any moment during

the broadcast, so that I can

appreciate and enjoy being part of

a simultaneous

communal experience.

HT108

During and after the

broadcast I want to be able

to access detailed analytics

about those who are

watching, where, on what

devices and for how long, so

that I can understand the

behaviour of the users and –

potentially – refine future

offerings to make them

more attractive.

Essential A good first

implementation of the

logging and analytics

services.

We may want to fake the

data during our first trial

to give the illusion of a

larger audience.

HT011

During the broadcast I want to be

able to rate on a scale of 1 to 10

my current assessment of the

production, so that I can express

my developing responses and feel

that I am contributing to a

communal assessment.

 Not needed

for trial.

HT012

During the broadcast I want to be

 Not needed

for trial.

D2.1 System Architecture

Page 112 of (135) © 2-IMMERSE Consortium 2017

As a user at home As a producer Priority Implementation

able to see an aggregated total of

the ratings of all those who are

watching simultaneously, so as to

monitor and assess the responses

of the audience and to measure

my own responses against the

broader view.

HT013

During the broadcast I want to be

able to choose to view either the

broadcast mix coverage of the

production being created by the

screen director or to view a static

wide shot of the stage or both.

This choice will allow me to

experience the broadcast in

a “purer”, less mediated or

narrativised form.

HT109

During the broadcast I want

to be able to offer the full

mix as created by the screen

director and a static wide-

shot of the whole stage, so

as to allow users to toggle

between these and so

achieve a more inclusive

understanding of the

production.

Essential. This is a specific

expression of HT009

which relates to video

only.

HT014

During the broadcast I want to be

able to view synchronised sub-

titles for the production, either on

a second-screen device or overlaid

on the main performance feed. If I

am hard-of-hearing I want to do

this to enjoy the broadcast fully;

and if my hearing is good I may

want to do this if I find the

language of the playwright (e.g.

Shakespeare) unfamiliar and a

bar to achieving a satisfying

understanding.

HT110

During the broadcast I want

to be able to offer

synchronised sub-titles so as

to enhance the experience

for the user.

Essential for

subtitles only.

Subtitles only to be

rendered on the TV, not

on the second screen

device.

Note IRT’s existing

work on subtitling

MPEG-DASH streams.

We will need to

understand how to obtain

and process the subtitle

feed from RSC.

HT015

During the broadcast if I have

restricted sight I want to be able

to access synchronised audio

description for the production, so

as to understand and appreciate

fully what is being shown.

HT111

During the broadcast I want

to be able to offer audio

description so as to enhance

the experience for the user.

Not needed

for trial.

HT016

During the broadcast I want to be

able to access synchronised

information and commentary in

the form of image and text created

by the producer, so that these

elements can enhance my viewing

experience, deepening my

engagement and understanding.

HT112

During the broadcast I want

to be able to offer

synchronised information

and commentary (created in

a cost-effective manner

before the production) so as

to enhance the experience

for the user.

Essential. Implementation within

the architecture should

be feasible using the

Timeline

Synchronisation service.

HT017

During the performance I want to

 Not needed

for trial.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 113 of (135)

As a user at home As a producer Priority Implementation

be able to use Twitter from my

second-screen device so as to

contribute to an unfolding

discussion of the production and

to view similar contributions by

others. This is so that I can feel

engaged in an active and

developing discussion, which may

be light-hearted or serious, of the

production.

HT018

During the performance I want to

be able to access synchronised

subtitles (cf HT013) and/or

synchronized text commentary (cf

HT015) and/or comments via

Twitter (cf HT017) on either my

second-screen device or as

overlays on the main screen or as

elements on the main screen with

the main image inset. This is so

that my viewing experience can be

as flexible and as responsive as

possible.

 Essential Roundup of previous

requirements.

HT019

At scheduled moments during the

performance (such as towards the

ends of scenes) I want to be able to

express my approval of the

production and have that

approval aggregated with that of

others who are watching and

displayed as audio (such as

applause) or in a visual form. This

is so that I can feel I am

participating in the full social and

communal experience of

experiencing a play.

HT113

At scheduled moments

during the performance I

want to be able to feedback

the approval expressed via

HT019 to the performers,

either in an audio or visual

form, so as to provide them

with an understanding of

those who are watching and

their appreciation of the

show.

Not needed

for trial.

HT020

During and after the broadcast I

want to be able to contribute text

comments about the production,

so that I can share my knowledge

and responses, and I want these

comments - after moderation by

the producer – to be preserved in

a layered structure that be

accessed synchronously with

the “as live” video on demand

offering of the production.

HT114

During and after the

broadcast I want to be able

to moderate the text

comments about the

production, so that I can

control these comments and

create a lasting version that

can continue to be enhanced.

Not needed

for trial.

John envisages that this

scenario will be

implemented within the

Theatre in Schools trial.

HT021 HT115 Not needed

D2.1 System Architecture

Page 114 of (135) © 2-IMMERSE Consortium 2017

As a user at home As a producer Priority Implementation

At any point after the live

broadcast I want to be able to

access an “as live” recording of

the broadcast with the

functionality of many of the URs

already specified. This will allow

me – if I have missed the live

broadcast - to recreate many of its

elements at a time that is

convenient to me.

At any point after the live

broadcast I want to be able

to provide to users an “as

live” recording of the

broadcast with the

functionality of many of the

URs already specified. This

will allow me to further

maximize the number of

users and the revenue for the

production.

for trial.

HT020b

After the broadcast I want to be

able to offer feedback to the

producer about any and all

aspects of the production, and to

know that feedback has been

communicated, so that I can feel I

have an involvement in the shared

experience of the production.

HT116

After the broadcast I want to

be able to receive feedback

from users about any and all

aspects of the production, to

acknowledge their

comments, and to

communicate individually

and collectively with them

both about this production

and those in the future.

Not needed

for trial.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 115 of (135)

 Intra-Location and Inter-Location Media Annex B

Synchronisation with DVB-CSS

A multi-device synchronised experience consists of a number of media objects that will be presented

on separate participating at times specified on the experience timeline. These media objects are

manifested in the experience by DMApp components and can be discrete such as images, infographics

or continuous such as live/on-demand audio/video streams.

In this section, we firstly outline how timeline relationships are specified to facilitate the conversion of

timestamps from one timeline to another (for example, between the experience timeline and the media

objects’ timelines). An overview of the WallClock Synchronisation service is provided next. The

possible configurations of Timeline Synchronisation components for intra-home, inter-home sync

scenarios are covered in the sections that follow. The possibility of hybrid scenarios where concurrent

intra-home sync experience merge into an inter-home sync experience is also covered.

B.1 Timeline Correlations

A correlation between two timelines specifies a deterministic linear monotonic relationship between

them, such that there is a one-to-one mapping between time values on each timeline. It is expressed as

a pair of corresponding timestamps (from each timeline) and a speed constant. The relationship

between the experience timeline and the timeline of a media object in the experience can be expressed

thus:

[TExp, TContent, Speed]

A time value on the media timeline TContent and the corresponding time value TExp on the parent

timeline represent the same moment in time. The speed is a number that controls how rapidly time

moves on the media timeline as time moves on the parent timeline. The timestamps need not be

expressed in terms of the same units; the timelines can have different tick rates. For instance, TExp can

be in milliseconds whilst TContent is in PTS ticks (for an MPEG-2 TS video stream).

For an on-demand video stream, for example, the correlation is relatively simple e.g. [TExp, 0] – at time

TExp on the experience timeline, play video stream from start position. The notion of a start time

position is somewhat different if the media object is a live or time-shifted video stream. The timing

information signalled in the stream need not have time-zero as the starting position for a programme

(e.g. PTS in MPEG-2 TS); the counter used for injecting timing may even rollover.

For live video streams, this correlation mapping may only be known at production time.

B.2 WallClock Synchronisation

To realise a multi-device synchronised experience, each companion device must report the progress of

its own media timeline to a master device (as in DVB-CSS) which then decides on a reference

timestamp that all companions will adapt their playback to. However, the timestamp will be out-of-

date when it arrives at the companion due to network and processing delays. To account for latencies

in network communication between master terminals (e.g. an HbbTV) and their companions, the

timestamps exchanged make reference to a shared Wall Clock.

The DVB-CSS Wall Clock synchronisation protocol (CSS-WC) uses clock synchronisation techniques

to establish a best effort approximation of the TV’s Wall Clock at the companion device. The clock

synchronisation technique is based on the client-server mode of operation in NTP. The TV is assumed

D2.1 System Architecture

Page 116 of (135) © 2-IMMERSE Consortium 2017

to have some kind of local system clock known as the Wall Clock. The companion uses the clock

synchronisation protocol to create its own local model of the TV’s Wall Clock.

The WallClock Service performs the same function as the WallClock synchronisation mechanism in

DVB-CSS but has to accommodate, in addition to site-local setups (TV and Companion Devices on

same local network), situations where devices are distributed.

Site-Local Clock Synchronisation

For site-local clock synchronisation, the WallClock service uses the CSS-WC protocol to establish the

common reference time between the TV and the companion devices. The WallClock service runs on

the TV device (this comes for free on HbbTV 2.0 televisions) and timestamp exchanges in the CSS-

WC protocol are carried out over UDP for low-latency communication (avoiding the SYN-ACK

handshake and congestion control delays of TCP).

The clock synchronisation model is a best-effort estimate. It enables the companion to estimate device,

at any given moment, what time value the TV’s Wall Clock will have. The companion will create its

model of the TV’s WallClock by determining the relationship between its own local system clock and

the Wall Clock of the TV.

System clocks can drift over time; no two crystal oscillators are perfectly identical. Periodic timestamp

exchanges with the WallClock service are therefore required by each companion device to adjust their

WallClock offset.

Distributed Clock Synchronisation

In the distributed configuration, the WallClock Service runs on a cloud platform and WallClock

service clients perform the timestamp-exchanges with the service via WebSockets instead of UDP. A

WebSocket-based variant of the CSS-WC protocol is employed for carrying the timestamped

request/response messages.

The reason for this is that port restrictions across firewalls may prevent the CSS-WC UDP messages

from travelling from one home network to another via the internet. The question then arises as to why

do this instead of relying on the system clock in each device being synchronised using NTP?

The problem with relying on NTP is that for many classes of application, there is no ability to ask the

host operating system whether it’s clock is synchronised and how accurate it is. There is no control

within the application over which NTP server the host device synchronises to. Also, more accurate

results are achieved (in principle) if there are fewer network hops involved.

It is likely that using a WebSockets-based protocol for clock synchronisation will achieve lower sync-

accuracy results than CSS-WC UDP-based protocol. If the sync-accuracy exceeds the perceptible

thresholds of asynchrony for inter-home experiences, then other options such as using UDP-based

CSS-WC across sites or using a different protocol for clock synchronisation altogether such as W3C

Timing Object will be explored.

B.3 Timeline Synchronisation Service

The DVB specification for Companion Screen and Streams (DVB-CSS, hereafter) defines the

necessary concepts, functional roles, overall architecture and abstractions to deliver up to frame-

accurate CS experiences bridging DVB-based broadcast services and companion content. HbbTV 2.0

adopts the same architectural abstractions, interfaces and protocols as DVB-CSS for synchronisation

between a master TV terminal and one or more slave CS applications.

The Timeline Synchronisation Service performs similar functions as the Media Synchronisation

Application Server (MSAS) specified in DVB-CSS (DVB Bluebook A167-2, Section 4.2.2).

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 117 of (135)

Timeline Service as a Synchronisation Client

The most basic operation of the Timeline Synchronisation Service is to forward timeline updates from

one device (the synchronisation master terminal) to other devices (the synchronisation slaves). A

rudimentary implementation of the service need not even require presentation timestamps from all

devices to compute a reference presentation timestamp that all devices can comfortably achieve. Only

presentation timestamps from the synchronisation master is necessary.

In fact, Sync Client A need not be a device at all. It can be anything that can ‘play’ a timeline and

periodically provide timeline updates using a synchronised WallClock as a time reference. As the

Timeline Service manages an experience timeline, it is can feasibly itself be a source of timeline

updates to devices participating in the experience. This is illustrated by Figure 8.

Figure 8: Timeline Service as a Synchronisation Client

B.4 Reusing DVB-CSS Interfaces

In the abstract depiction of the Timeline Synchronisation Service in Figure 6, the service, its clients

and the timeline service are assumed to be runnable anywhere i.e. they can be co-located on the same

device, run on devices within the same local network or run as a cloud service.

An HbbTV 2.0 stack is an instance of the model where both the Timeline Synchronisation Service and

the Synchronisation Client are co-located in a television. Similarly, a cloud-based synchronisation

solution is an instance of the model where the Timeline Synchronisation Service runs as a SaaS in the

cloud.

Where inter-process/network communication is required between the Timeline Sync Service and a

Sync Client, the interfaces defined in DVB-CSS can be used:

 CSS-WC (for clock synchronisation)

 CSS-TS (for timeline updates) and possibly

D2.1 System Architecture

Page 118 of (135) © 2-IMMERSE Consortium 2017

 CSS-CII (for content id and WC/TS endpoints dissemination)

The caveat for using the CSS-WC interface is that it was designed for local-network operation and

relies on UDP for transferring message payloads. For distributed clock synchronisation, a variant of

the CSS-WC protocol based on W3C Web Sockets may be used or alternatively, the W3C Web

Timing API can be used to perform WallClock synchronisation. With the second option (W3C Web

Timing API), the CSS-WC in an HbbTV 2.0 device can still be used on the home network for

WallClock synchronisation with companion devices; cross-home WallClock Synchronisation is

achieved using W3C Web Timing API and Timing Objects.

This approach ensures that for intra-home inter-device synchronisation, HbbTV 2.0 devices are used

with their existing media sync-protocol stack. For inter-home synchronisation, the same HbbTV 2.0

stack can be used but augmented with a W3C Web Timing API client to perform distributed clock

synchronisation.

The interfaces used for communication between the Timeline Sync/WallClock services and

Synchronisation Clients are summarised in Figure 9.

Figure 9: Communication interfaces between the Timeline Sync/WallClock services and Sync

Clients

B.5 Site-Local/Intra-Home Synchronisation

For scenarios requiring local synchronisation (i.e. intra-home inter-device synchronisation), a

configuration of our model is used where both the Timeline Synchronisation service and the

WallClock service run on the master device. This configuration is illustrated in Figure 10.

Both services are part of the HbbTV 2.0 stack and will therefore be available on HbbTV 2.0 compliant

televisions. These services are launched when inter-device synchronisation is enabled on the TV.

Upon launch, service endpoints (CSS-WC server and CSS-TS server) are created for the WallClock

Service and the Timeline Sync Service respectively.

In addition to the Timeline Synchronisation service and the WallClock service, a Content Id & other

Information Service (CSS-CII server) is also present in the HbbTV 2.0 media synchronisation stack.

The purpose of this service is to advertise content identifiers and WC/TS interface endpoints to

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 119 of (135)

companion screen applications. A Synchronisation Client is also available as part of the HbbTV stack

to report content timeline positions to the Timeline Synchronisation service when the television plays

a media stream.

The companion screen application is effectively a Synchronisation Client. It is provided a CSS-CII

endpoint URL after the DIAL-based TV- discovery process and can then proceed to create a

WebSocket connection with the CSS-CII server. Through this CSS-CII protocol connection, the

Companion Screen App is informed of the content id of the content currently playing on the TV and

the CSS-WC/CSS-TS endpoints URLs
8
. Using these, the companion can i) initiate WallClock

synchronisation using the CSS-WC protocol, and ii) connect to the Timeline Sync Service’s CSS-TS

server to receive timeline updates
9
.

The timeline updates enable the Companion Screen App to update its estimate of the TV’s timeline.

Using a correlation between the TV’s content timeline (Stream A) and the companion content timeline

(Stream B), the companion can determine the expected position on its timeline at the current

WallClock time. It can then proceed to adapt the playback of its content (Stream B) to reflect this

updated position (seek in, speed up or slow down the media playback).

Figure 10: Timeline Sync Service and WallClock Service deployment for intra-home sync

The Layout Service and Timeline Service are shown in Figure 10 as site-local deployments. This is for

illustrative purposes only; they may run on the TV device, a set top box or in the cloud.

In either case, the Timeline service needs to maintain an awareness of the experience timeline

progress. This is because it is notified of newly available media objects/DMApp Components during

the experience and needs to instruct the Layout service to make a decision on where to present these

8
 The companion is also informed about available timelines it can use to synchronise against.

9
 The synchronisation client selects a timeline to receive updates about.

D2.1 System Architecture

Page 120 of (135) © 2-IMMERSE Consortium 2017

media objects/DMApp Components. The Timeline service achieves this by instantiating a CSS-TS

client endpoint to receive timeline updates from the television.

B.6 Inter-Home Synchronisation

For inter-location synchronisation scenarios such as distributed home sync, a configuration of our

abstract model is selected such that timeline synchronisation is centralised as a service running in the

cloud. In this configuration, as shown in Figure 11, the Timeline Synchronisation Service, the

WallClock service along with the Timeline and Layout services, are all deployed as part of the

UXEngine running in the cloud.

The Timeline Service retrieves and manages an experience timeline; it can therefore be used as a

source of timeline updates as the experience progresses. The Timeline Service in Figure 11, therefore,

also includes the functionality of a Synchronisation Client. The Timeline Service enables

synchronisation as a service to be available for a particular experience by launching the Timeline

Synchronisation Service and passing to it experience metadata such as Correlation Timestamps,

context identifiers, etc. The Correlation Timestamps ([Texp, TB] in Figure 11) enable the Timeline

Synchronisation Service to map time values from the experience timeline to the media objects timeline

bn(media object played by the devices).

Once launched, the Timeline Synchronisation Service can receive experience timeline updates from

the Timeline Service and forward these updates to any devices connected to it.

The cloud-based WallClock service enables devices at different locations (e.g. different homes) to

establish a common WallClock. It uses a mechanism such as the W3C Web Timing API to achieve

Clock Synchronisation.

Figure 11: Cloud-based service deployment for inter-home sync

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 121 of (135)

In this inter-home synchronisation configuration, the HbbTV terminals in each home are essentially

Synchronisation Clients. The component driving the distributed experience is the Timeline Service via

the experience timeline i.e. the Timeline Service is the synchronisation master and the HbbTV

terminals are the slaves
10

.

The HbbTV terminal in the home will be informed of the Timeline Synchronisation Service and

WallClock Service URLs by the Timeline Service during the experience bootstrapping process. Using

the WallClock Service URL, the HbbTV terminal can initiate the WallClock synchronisation process

using the W3C Web Timing API. To receive timeline updates (control timestamp in Figure 11) from

the synchronisation master (the Timeline Service), the HbbTV terminal brokers a connection with the

CSS-TS server of the Timeline Sync Service. Based on the received control timestamp, the HbbTV

terminal in each home can update its estimate of the experience timeline (i.e. the correlation of the

experience timeline with the WallClock). Using Correlation Timestamps from the Timeline service, it

can map the current position on the experience timeline to the expected current position on its content

timeline. By comparing the expected content timeline position to its actual content timeline position,

the HbbTV terminal can determine how to adapt its playback to move to the expected position.

Although, the HbbTV devices in the inter-home synchronisation scenario are slaves to the Timeline

Service, they can be synchronisation master in their own home dominion. Thus if companion devices

want to synchronise to an HbbTV already participating in inter-home sync, a local Timeline Sync

Service (shown as greyed out service in HbbTV device in Figure 11) can be started on each TV to

mimic the intra-home sync configuration described in the previous section.

B.7 Intra-Home Synchronised Experiences Merging into an Inter-

Home Synchronised Experience

It is possible for separate intra-home synchronised experiences to merge (after having already started)

into one inter-home synchronised experience. This could for example represent a scenario where two

separate Theatre-in-the-home experiences are launched at different locations. At each location, a

television device plays an on-demand video stream showing the performance and additional content

appearing on companion devices are synchronised with the TV. After a while, the persons in the two

concurrent experiences decide to merge their experience into a common one.

For the user journey to be plausible, it assumed that

1) the televisions play on-demand video streams,

2) they have the capability to seek within the stream and

3) the timeline positions of the TV’s media stream at each location differ only by a relatively small

amount.

When the separate intra-home synchronised experiences have been launched, then the deployment

configuration at each location may be site-local. i.e. at each location, a configuration of components as

shown in Figure 10 can be envisaged. The synchronisation master in each home is the Synchronisation

Client running on the TV (part of HbbTV 2.0 stack).

As explained in the intra-home sync section, inter-device synchronisation on the local network is

achieved through the DVB-CSS suite of protocols. Each TV runs a site-local Timeline

Synchronisation Service to which companion devices connect to receive timeline updates (control

10

 The functionality for HbbTV terminals to function as synchronisation slaves is optional.

D2.1 System Architecture

Page 122 of (135) © 2-IMMERSE Consortium 2017

timestamps). The Timeline Service also runs a CSS-TS protocol client to be informed of timeline

updates sent by the TV.

When both intra-home synchronisation experiences are merged into a single inter-home experience, an

additional Timeline Synchronisation Service instance will be instantiated in the cloud-based

UXEngine. A hierarchical configuration of Timeline Sync services is obtained where the Timeline

Sync service instances in the homes (although still synchronisation masters in their own dominion) are

now slaves to the cloud-based Timeline Sync service instance.

As shown in Figure 12, each site-local Timeline Service receives timeline updates from the TV’s

Timeline Sync service instance, specifying the time position the TV is at. The Timeline Service will

forward these presentation timestamps to the cloud-based Timeline Sync service. After having

received TV presentation timestamps from all homes, the cloud-based Timeline Sync service

computes a presentation timestamp that all TVs can achieve. The suggested presentation timestamp is

communicated back to each location-specific Timeline Service which will instruct the TV to align

itself to this new correlation.

Figure 12: Concurrent intra-home sync experiences merged into an inter-home sync experience

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 123 of (135)

 Server-based Media Composition Annex C

C.1 Goal

“Deliver a superb presentation that doesn't require the broadcaster to author bespoke outputs.”

C.2 Example compositions

Commonly used compositions are pre-generated using a production instance of the composition

service and uploaded to a content delivery network. This reduces the amount of dynamic compositing

performed on client devices.

C.2.1 Example #1

Description: Video wall and picture-in-picture overlay showing replays

Characteristics: Video tiling, cropping, scaling, overlay

Figure 13: Example #1

C.2.2 Example #2

Description: Four alternative cameras on a tablet and info graphic overlay

Characteristics: Multiple feed aggregation, scaling, alpha-blended 2D overlay

D2.1 System Architecture

Page 124 of (135) © 2-IMMERSE Consortium 2017

Figure 14: Example #2

C.2.3 Example #3

Description: Wide-angle camera with curated footage overlay and info graphics

Characteristics: Scaling, overlay, alpha-blended overlay

Figure 15: Example #3

C.2.4 Further examples

 Live reframing and compositing of preferred cameras angles

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 125 of (135)

 Split screen presentation

 Stretching content across two or more screens

 Choice of commentary, choice of telemetry feeds and stats presented using overlays, picture-in-

picture or on different screens.

 "My stats screen", "My replay screen", “My TMO" screen, "My wide-angle shot screen",

"Chelsea stats screen", "MUFC screen" (representing a semantic abstraction over physical

screens)

 Cross fading or overlaying adverts and other filler content during breaks in action

 Slow motion (bullet-time) action replays

 Compositing other compositions together

C.3 Functional description

The experience engine is responsible for combining timeline events, broadcast signals and layout

information into low-level compositing instructions that are sent to the composition service via a

media composition protocol. This protocol describes which input feeds to use, how to combine them

over time and which output feeds to create.

The composition service will fetch feeds, decrypt, decode, synchronise, composite, post-process and

present the result to a screen. Separately hosted composition services will also encode, encrypt and

deliver the result over a network.

The composition service is capable of generating outputs that are tailor-made to the resolution, colour

depth and bandwidth requirements of each client device, as described by the media composition

protocol.

The experience engine will only generate compositing instructions that conform to usage rights

previously negotiated with the media provider, such as the context in which a clean feed can be used

and for how long. The composition service is responsible for encrypting the resulting composited

streams before they are uploaded to a content delivery network or distributed via a real-time protocol.

The service has a digital rights management (DRM) component to manage all the keys.

C.4 Functional Flow

The following list outlines the steps performed by the composition service in response to edit

decisions and user interactions that affect layout and presentation.

1. Parse media composition protocol (MCP)

2. Determine which object-based media feeds to request

3. Receive, decrypt and decode each feed

4. Synchronise playback of each feed to the MCP timeline.

5. Perform compositing operations such as alpha blending, scaling and cropping.

6. Layout and render 2D/3D info-graphics.

7. Optionally re-encode and re-encrypt composited outputs for distribution.

The compositor has much in common with a Multipoint Control Unit (MCU) used in video

conferencing apps (http://whatis.techtarget.com/definition/multipoint-control-unit-MCU) and is

capable of aggregating multiple feeds together into a single presentation to generate the experience

http://whatis.techtarget.com/definition/multipoint-control-unit-MCU

D2.1 System Architecture

Page 126 of (135) © 2-IMMERSE Consortium 2017

and assist with delivery.

Figure 16: Media Composition Service

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 127 of (135)

C.5 Composition Latency

The composition service is responsible for pre-emptively downloading audio and video assets in order

to prime the decoding and compositing pipeline. It must attempt to minimise this warm-up latency in

the interests of a responsive user experience. Network hosted composition services will incur greater

latency due to media encode and delivery overhead.

Animated layout changes composited remotely will appear slick and smooth, but there may be

considerable latency (in the order of 4 seconds) before the client can render them. Anything that

involves a fundamental reconfiguration of the compositing pipeline as the result of a user interaction

will incur significant latency. [Note that one way of mitigating this is to utilise RTP for delivery of

composited media feeds from the composition service.]

Instantaneous feedback is required for most user interactions and this will be achieved by presenting

the user with a spinner or progress bar until composited media feeds become available.

C.6 Compositing Devices

2-IMMERSE experiences will be presented on client devices with a large range of capabilities. Some

devices are capable of compositing object-based media; some are incapable due to limited memory,

battery life and compute resources. Compositing is the process of combining object-based broadcast

feeds into a number of different presentations and this requires a powerful compositing solution that’s

able to meet the demand of multiple UHD outputs.

HbbTV 2.0 mandates support for only one video/audio being decoded at time. A manufacturer can

choose to go beyond that and support more than one, and the specifications are designed to

accommodate that, but it is safe to assume that it is unlikely any will implement that in the near future.

The HbbTV specification describes how the TV must provide a browser environment and TV tuner

with certain minimum capabilities. So, for example, picture-in-picture functionality provided as part of

the TV's user interface does not necessarily imply that that dual-decoding capability is made available

to HbbTV applications.

C.6.1 Local Versus Remote Compositing

A high-end PC or STB is required to run the composition service on the same network as companion

screens and televisions. This device must be relatively powerful and will need to be installed in homes,

schools and pubs.

Compositing in the cloud has the advantage of being readily scalable and upgradable. A paid-for

subscription service built around the provision of object-based experiences driven by cloud-based

compositing is a new source of revenue. During downtime between televised events, there is no ROI

from a dedicated STB solution whereas with cloud hosting, costs are only incurred when the service is

used.

As an example, Gaikai (https://www.gaikai.com/) has pushed PlayStation hardware into the cloud and

uses a video streaming mechanism to deliver interactive game play straight to thin-clients on a per user

basis. They have built a subscription model that allows users to play a PlayStation game within

seconds of pressing a button, without downloading or installing anything and on a device that was

never designed to do it.

https://www.gaikai.com/

D2.1 System Architecture

Page 128 of (135) © 2-IMMERSE Consortium 2017

C.6.2 Thin Clients

Both the local and remote compositors have the benefit that client devices can be thinner or simpler,

therefore catering for a greater range of legacy devices and future devices. This also reduces the need

for a framework like TAL (Television Application Layer). This is beneficial because TAL delivers a

lowest common denominator feature set in order to abstract away differences in devices.

C.7 Interfaces

When hosted as a network service, the composition interface is accessed via a web server supporting

REST end-points, cross origin resource sharing (CORS) and HTTPS. The resulting composited media

is pulled via HTTPS or pushed via SRTP, RTMP or other real-time protocol.

For a composition service running on the client device, the interface is accessed provided by a

JavaScript library in the web browser. The composited outputs are available as WebGL or Canvas

contexts.

C.8 Selected Technology

Transport HTTPS, SRTP or RTMP

Encryption/Decryption and licensing Common Encryption (CENC) and OMA

DRM 2.0 (as used by mp4box)

Decoding libav, MSE and EME

Encoding libav, FFMPEG, MP4BOX, DVB-DASH

File serving nginx, CDN

Client-side composition BBC R&D HTML5 Media Compositor

(WebGL, DASH)

2D info graphic overlays HTML5/CSS3

HW accelerated compositing WebGL, OpenGL

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 129 of (135)

 Experience Deployment Annex D

Deployment involves moving software and content to a place where it can be used when it’s needed.

In the context of 2-IMMERSE experiences, this involves deploying:

 Media content and meta-data

 Web components

 Web applications/sites

 2-IMMERSE native applications

 TV applications

 Manufacturer CSS launcher applications

 Provisioned services (locally and in the cloud)

The mechanics of deploying an application depends on the user journey taken to launch an experience

and whether the application is launched from the companion screen or the TV.

D.1 2-IMMERSE Native Application Deployment

A native companion screen app (host to the web application) can be:

1. Manually downloaded and installed from an app store

2. Installed from a TV prompt over DIAL (with user confirmation)

3. Installed semi-automatically via a DevOps provider such as HockeyApp

The 2-IMMERSE native companion application must be installed in order to join the distributed media

experience. During development and user testing a DevOps provider such as HockeyApp

(http://hockeyapp.net/) will be used to deploy beta versions, collect live crash reports, get feedback

from real users and analyse test coverage. Upon release, it is expected that the native application will

be uploaded to native app stores.

Application versions will be promoted to a release repository branch. This will trigger the continuous

integration servers to build and test the apps in the cloud on multiple devices, before being made

available via HockeyApp (or similar).

Users will be prompted by DIAL on the TV or CSS device if the 2-IMMERSE native application

needs to be installed.

D.2 HbbTV 2.0 TV/CSS Application Deployment

The 2-IMMERSE native application has an application manager. This application manager is

equivalent to HbbTV 2.0’s application manager in its responsibilities. The management of web

components and presentation is done at a higher level within the web application itself in coordination

with the UXE.

http://hockeyapp.net/

D2.1 System Architecture

Page 130 of (135) © 2-IMMERSE Consortium 2017

D.3 HTML Television Application Deployment

HTML TV applications can be deployed:

1. Automatically via the DVB signal (Broadcast Carousel Delivery)

2. Manually from an internet TV portal (TV app store)

3. Via a URL specified by a companion screen

4. Via a URL specified in the DVB signal (or DVB-DASH event)

D.4 Broadcast-Dependent Application Deployment

Broadcast-related autostart applications are usually associated with a broadcast channel and triggered

by an event on that channel. Broadcast-dependent applications can start as soon as the channel is

selected or on receipt of an Application Information Table (AIT) update (usually co-incident with the

start of an event). The application can be launched immediately; as is generally the case with radio

stations, or the user can be prompted to open the application (such as via the red button).

An AIT transmitted in the DVB signal can carry the URL of an HbbTV 2.0 application for IP delivery.

Alternatively, the application can be transmitted within the DVB signal, a process called ‘Broadcast

Carousel Delivery’. In general, applications are loaded via the broadband connection from standard

HTTP servers. As an alternative, AIT signal can be delivered by DVB-DASH events.

The TV will receive and analyse the AIT, using the information it contains to download the

application using an IP or Broadcast Carousel delivery method, finally displaying it via the HbbTV 2.0

compliant web browser. A DVB multiplexer is required to create a DVB AV signal that also carries an

AIT.

(See http://www.hbbtv-developer.com/site/wiki/index.php/Setting_up_a_HbbTV_environment)

The HbbTV Application Manager uses the AIT to control the lifecycle of an application whereas the

browser is responsible for presenting and executing it.

(See section 5.3.3 of the HbbTV 2.0 specification: https://www.hbbtv.org/wp-

content/uploads/2015/07/HbbTV_specification_2_0.pdf)

D.5 Broadcast-Independent Application Deployment

Broadcast-independent applications are started via a running application or an Internet TV Portal. An

Internet TV Portal is an application that provides a type of start page where broadcast-independent

applications are filtered and offered in an appropriate and useful way to the end user. The Internet TV

Portal may be opened by pressing a dedicated Internet TV Button on the remote control unit.

For all 2-IMMERSE use cases, it is valid for a user or administrator to want to launch a broadcast

independent HbbTV 2.0 application on an HbbTV 2.0 terminal from a companion screen application.

In this instance, DIAL expects the HbbTV 2.0 terminal application to be pre-installed by the user from

a TV app store. This requires HbbTV 2.0 applications to be deployed to the manufacturer’s app stores.

(See: https://www.fokus.fraunhofer.de/go/fokusmegastore)

(See: http://www.hbbtv-developer.com/site/wiki/index.php/Starting_HbbTV_Development)

http://www.hbbtv-developer.com/site/wiki/index.php/Setting_up_a_HbbTV_environment
https://www.hbbtv.org/wp-content/uploads/2015/07/HbbTV_specification_2_0.pdf
https://www.hbbtv.org/wp-content/uploads/2015/07/HbbTV_specification_2_0.pdf
https://www.fokus.fraunhofer.de/go/fokusmegastore
http://www.hbbtv-developer.com/site/wiki/index.php/Starting_HbbTV_Development

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 131 of (135)

D.6 HTML Companion Application Deployment

HTML Companion applications can be deployed via:

1. URLs from a HbbTV 2.0 master device

2. URLs from another companion device

3. URLs from the UXE (timeline & layout services)

Launching a companion screen application from an HbbTV 2.0 television requires the companion

device to have the application pre-installed and a manufacturer specific HbbTV 2.0 CSS launcher

service must be running on the companion to listen for launch requests. This is a complicated setup for

users participating in the 2-IMMERSE public trials. To improve the user experience, it is better if the

2-IMMERSE experience is already running; therefore companion devices will only require application

discovery and app-2-app communication. Users will still have to install and run the 2-IMMERSE

native companion application in order to join the distributed media experience.

D.7 Content Deployment

2-IMMERSE web applications, components and media objects are deployed to a CDN. This makes it

possible to push upgrades out to devices. Meta-data and media objects can also be distributed via DVB

signalling in DVB T/S/C streams.

To configure a multi-device experience, a curated set of web applications and components must be

loaded onto each device. To achieve this, devices must be running the 2-IMMERSE native application

and have subscribed to events governing application life cycle.

D.8 Web Application Life Cycle

Features will be activated and deactivated during different phases of the experience. For example, in

the case of the theatre, different functionality is required in the show versus the interval. Consequently,

application components have a life cycle that is controlled automatically by the broadcast and by users

as a result of enabling or disabling components, or because of the introduction of new devices to the

environment.

Application life cycle events include:

 Pre-emptive load (install)

 Activate/enable (run)

 De-active/disable (stop)

Life cycle events must be subscribed to by the 2-IMMERSE native application wrapper and used to

manage the life cycle of the web application. Similarly, the web application must subscribe to events

that control the life cycle of web components.

D.9 TV Versus CSS Initiated Deployment

The following sequence diagrams illustrate two possible application deployment scenarios out of

many possible combinations.

D2.1 System Architecture

Page 132 of (135) © 2-IMMERSE Consortium 2017

A web application is firstly deployed to the HbbTV 2.0 master device. This web application

communicates with the layout engine and therefore indirectly controls the deployment of web content

(including functionality) to companion devices. It may also instigate the deployment/provisioning of

cloud-based or local services

There is provision in the HbbTV 2.0 spec for routing events/triggers from the DVB-DASH or DVB-T

stream to companion devices. Companion devices can also fetch the content directly or be instructed

to fetch the content by the user experience engine.

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 133 of (135)

D.10 Upgrades

A 2-IMMERSE device ecosystem may cache web applications and web components, preventing the

latest versions from running. Layers in the application stack must subscribe to upgrade events to

ensure the last version of the software is running.

D2.1 System Architecture

Page 134 of (135) © 2-IMMERSE Consortium 2017

 Testing and Validation Annex E

Testing and validating the correctness of a large distributed system as a unit presents a significant

challenge due to complexity, hidden state and a large surface area to test. To make testing more

manageable, individual features, modules and network nodes should first be tested individually, and

then the overall system tested as a distributed collection of nodes.

The items of content/user experience applications that run on the system also need to be tested to

ensure that they have been implemented correctly and that there are not any unexpected interactions

with the wider system.

E.1 System testing

Testing the system itself (rather than the content/user experiences which run on it) might include:

 Unit/module-level testing

 Web page/UI validation (e.g. ensuring that given a test input all expected elements are present

and physically on screen, for a range of device types).

 User-input simulation testing

 Media/video rendering testing (e.g. checking that the result of a media rendering operation of

fixed test input is pixel identical to a pre-prepared expected test output).

 Testing of distributed join/leave/discovery semantics.

 Testing for graceful handling of unexpected conditions and failure paths.

 Testing for potentially problematic distributed interactions even if they don’t result in a failure

or incorrect output (e.g. ordering issues).

Test coverage can be measured by automated tools; this can be useful for identifying areas which need

further testing or are unused. Metrics which may be useful might include:

 Line coverage

 Branch coverage

 API interface coverage

Particularly for branch and line coverage, 100% coverage is not usually necessary due to diminishing

returns.

Depending on language and platform it may be possible to run tests and/or build the test program with

increased instrumentation to detect potentially problematic conditions which may otherwise pass

unnoticed. This is particularly the case if any parts of the system are implemented in native code (e.g.

LLVM/gcc sanitisers).

Frameworks and tooling for testing varies depending on language and platform. There are a large

number of JavaScript testing libraries to choose from.

To aid testing and debugging of the system, it may be useful to include API endpoints specifically for

the purpose of observing otherwise hidden state during testing or for directly initialising a test

D2.1 System Architecture

© 2-IMMERSE Consortium 2017 Page 135 of (135)

environment where the state would not otherwise be directly controllable. Generally, such test

interfaces should not be present in deployed builds.

It may also be useful to include invariant testing or other code-level assertions too expensive for

deployed builds, in test builds.

It may be useful in some test cases for logging output (possibly including test-build only debug

logging) to be directed to the test harness and used as part of the output under test; a possible case is

where intermediary state which is useful to test would otherwise have been lost.

API endpoints which are accessible to the public Internet should as much as possible be resistant to

attempts to subvert the system by supplying invalid input. It may be useful to run tools such as fuzzers,

possibly in combination with build instrumentation as described above, on such API endpoints to

check for unexpected failure modes or output types which may indicate a security issue.

Similarly, any API endpoints which handle authentication should be tested to ensure that invalid

credentials are properly rejected without leaking undue information by side channels (e.g. partial

success or timing).

E.2 Content/user experience application testing

Assuming that a content/user experience application is purely declarative, a subset of testing can be

performed statically. Any format used to describe the application should have a schema defined

(whether formal or informal) which can be used to automatically validate the format of the application.

In the case where the format defines layouts, transitions and so on, it should be possible to validate

that all coordinate, sizes, etc. lie within pre-determined bounds, and that all URLs and other references

refer to valid, existing resources. Non-static testing would include running the application on a test-

instance of the system, or a subset thereof, and validating that for a representative combination of

states and device types, the outputs are as expected, or at least in an expected range, and that no

unexpected failure conditions occur.

